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Abstract

Dynamic and quasistatic processes of contact with adhesion between an elastic or viscoelastic beam and a foundation

are considered. The contact is modeled with the Signorini condition when the foundation is rigid, and with normal

compliance when it is deformable. The adhesion is modeled by introducing the bonding function b, the evolution of

which is described by an ordinary differential equation. The existence and uniqueness of the weak solution for each of

the problems is established using the theory of variational inequalities, fixed point arguments and the existence and

uniqueness result in Commun. Contemp. Math. 1(1) (1999) 87–123. The numerical approximations of the quasistatic

problem with normal compliance are considered, based on semi-discrete and fully discrete schemes. The convergence of

the solutions of the discretized schemes is proved and error estimates for these approximate solutions are derived.� 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Processes of adhesion are very important in industry, especially when composite materials are involved.
There exists extensive engineering literature on various aspects of the subject. However, general mathe-
matically sound models are very recent. A novel approach to the modeling of contact with adhesion, based
on thermodynamic derivation, can be found in Fr�eemond (1982, 1987). There, the adhesive contact process
has been modeled by the introduction of an internal variable, the adhesion field b, that measures the
fraction of active bonds.

Recent modeling, analysis, and numerical simulations of adhesive contact with or without friction can be
found in Chau et al. (2001, in preparation), Raous et al. (1999) and references therein. The static contact
problem for the elastoplastic beam can be found in Khludnev and Hoffmann (1992). In Chau et al. (2001)
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the dynamic frictionless adhesive contact problem has been modeled and analyzed, and the quasistatic
version has been considered in Chau et al. (in preparation) where numerical simulations have been pre-
sented. The problem of adhesive contact with friction can be found in Raous et al. (1999) where the
modeling, based on thermodynamic principles, can be found, and numerical analysis and simulations
presented.

This work deals with the adhesive contact between a beam and a foundation. The beam is assumed to be
either elastic or viscoelastic, and the obstacle either rigid or deformable. Our interest lies in the description
and analysis of the dynamic or quasistatic processes of contact when adhesion takes place during contact.
We also describe convergent semi-discrete and fully discrete numerical schemes for the quasistatic problem
with deformable foundation. We note that very recent results on quasistatic contact of an elastic body can
be found in Andersson (1999, 2000). In the first paper the normal compliance contact condition is em-
ployed, and in the second paper the author obtained the Signorini condition by passing to the normal
compliance limit.

The paper is organized as follows: In Section 2, we describe the classical model for the process of ad-
hesive quasistatic contact between an elastic beam and a rigid foundation. In Section 3, we present the
variational formulation of the problem, list the assumptions on the problem data, and state an existence
and uniqueness result in Theorem 3.1. The proof of the Theorem is given in Section 4, and is based on the
theory of time-dependent variational inequalities and the Banach fixed point theorem. In Section 5, we
present dynamic and quasistatic models for adhesive contact between a viscoelastic or an elastic beam and a
deformable foundation. The reaction force is modeled with the ‘normal compliance’ condition. We prove
the existence of the unique solution to each of the problems. Moreover, we show that in the quasistatic case
when the foundation becomes stiffer the solutions approach the solution of the problem with a rigid
foundation. In Section 6 we consider the spatially semi-discrete approximation of the quasistatic problem
with normal compliance. We show that the discretized approximations converge to the solution. Under
additional regularity assumption we also establish the rate of convergence. Finally, in Section 7, we obtain
similar results for the fully discrete problem.

2. The model

In this section, we construct a model for the quasistatic contact process with adhesion. We consider a
linearly elastic beam of length L that is clamped at its left end while the right end is free. The beam is being
acted upon by an applied force of (linear) density f, and it may come in adhesive contact with a rigid
foundation below it. The setting is depicted in Fig. 1. The cases of a viscoelastic beam, dynamic process or a
deformable foundation will be described in Section 5.

Fig. 1. The setting of the problem.
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We denote XT ¼ ð0; LÞ � ð0; T Þ, for T > 0, and let u ¼ uðx; tÞ represent the vertical displacement of the
beam, at ðx; tÞ 2 �XXT . We assume that the obstacle is described by the function y ¼ /ðxÞ, for 06 x6 L. We
denote A ¼ EI , where I is the beam’s moment of inertia and E the Young modulus, and let LAðuÞ be the
function

LAðuÞ ¼
o2

ox2
A
o2u
ox2

� �
: ð2:1Þ

We assume, first, that the acting forces vary slowly in time and, therefore, the process is quasistatic.
Then, the equation of motion for the beam is

LAðuÞ ¼ f þ n in XT ; ð2:2Þ
where n ¼ nðx; tÞ denotes the reaction force of the foundation and the adhesion force. The rigid foundation
restricts the motion of the beam to displacements above it, thus

uP / in XT ; ð2:3Þ

which represents a non-penetration condition. When contact takes place the foundation’s reaction force n is
directed upward,

u ¼ / ) n P 0 in XT : ð2:4Þ
We now describe the adhesion process, following Fr�eemond (1982, 1987). We introduce the internal state

variable b ¼ bðx; tÞ, the ‘bonding field’, which measures the fraction of the active bonds between the beam
and the foundation. When b ¼ 1 at a point the adhesion is complete; b ¼ 0 means that all the bonds are
severed and there is no adhesion, and 0 < b < 1 represents the state of partial bonding. We suppose that the
adhesive resistance is active when the force is directed upwards, trying to separate the beam from the
foundation, and this restoring force is proportional to the distance from the obstacle and to b2. Therefore,

u > / ) n ¼ �jðu� /Þb2 in XT ; ð2:5Þ
(see also Raous et al., 1999). Here, j > 0 represents the interface stiffness when the adhesion is complete,
and jb2 is the ‘spring constant’ of the bonding field.

Now, conditions (2.3)–(2.5) may be written in the following complementary form:

uP /; n þ jðu� /Þb2 P 0; ðu� /Þðn þ jðu� /Þb2Þ ¼ 0 in XT : ð2:6Þ
Next, following Raous et al. (1999) we assume that the evolution of the adhesion field is given by

b0 ¼ �cjðu� /Þ2ðbÞþ in XT ; ð2:7Þ

where c is the adhesion rate, assumed to be a positive constant, and rþ ¼ maxfr; 0g denotes the positive
part of r. We use the latter to ensure that b does not become negative. In Eq. (2.7), and everywhere in the
sequel, a prime represents the time derivative.

We note that in Eq. (2.7) once debonding takes place there is no rebonding, i.e., b0
6 0. If we deal with a

process where rebonding can happen, condition (2.7) had to be modified accordingly (see e.g., Chau et al.
(2001)).

To complete the model we prescribe appropriate initial and boundary conditions. The initial condition
takes the from

bðx; 0Þ ¼ b0ðxÞ for x 2 ð0; LÞ; ð2:8Þ

where b0 represents the initial bonding field. The beam is rigidly attached as its left end, thus,

uð0; tÞ ¼ uxð0; tÞ ¼ 0 for t 2 ½0; T 
: ð2:9Þ
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In this work, subscripts x, xx, and xxx denote the first, second and third partial derivatives with respect
to x, respectively. There are no moments acting on the free end of the beam, thus,

uxxðL; tÞ ¼ uxxxðL; tÞ ¼ 0 for t 2 ½0; T 
: ð2:10Þ
The classical statement of the problem of quasistatic adhesive contact of a beam with a rigid obstacle is:

Problem P. Find a displacement function u : �XXT ! R and an adhesion function b : �XXT ! R such that
Eqs. (2.2), (2.6)–(2.10) hold.

3. Variational formulation and statement of results

We deal with a contact or obstacle problem, and it is well known that there exists a regularity ceiling for
the solutions which, generally, prevents them from having all the classical derivatives needed for the
classical formulation to make sense. Therefore, we proceed to derive a weak or variational formulation of
the problem.

First, we introduce additional notation. We use standard notation for Lp and Sobolev spaces (see e.g.,
Adams, 1975; Ionescu and Sofonea, 1993; Lions and Magenes, 1972) and let V be the closed subspace of
H 2ð0; LÞ given by

V ¼ fv 2 H 2ð0; LÞjvð0Þ ¼ vxð0Þ ¼ 0g:
We denote by H the space L2ð0; LÞ and by ð�; �ÞH ; j � jH its inner product and the associate norm, re-

spectively. Let K denote the convex subset of V defined by

K ¼ fv 2 V jvP / on ½0; L
g:
If ðX ; j � jX Þ is a real normed space, we denote by Cð0; T ;X Þ and C1ð0; T ;X Þ the space of continuous and

continuously differentiable functions from ½0; T 
 to X, with the respective norms

jujCð0;T ;X Þ ¼ max
t2½0;T 


juðtÞjX ; jujC1ð0;T ;V Þ ¼ max
t2½0;T 


juðtÞjX þ max
t2½0;T 


ju0ðtÞjX :

In the study of problem P we assume the following on the data:

A 2 L1ð0; LÞ and there exists A0 > 0 such that APA0 a:e: on ð0; LÞ; ð3:1Þ

f 2 Cð0; T ; L2ð0; LÞÞ; ð3:2Þ

c ¼ constant > 0; ð3:3Þ

/ 2 C1ð0; LÞ; /ð0Þ6 0; and if /ð0Þ ¼ 0 then /0ð0Þ6 0; ð3:4Þ

j 2 L1ð0; LÞ; jP 0 a:e: on ð0; LÞ; ð3:5Þ

b0 2 L1ð0; LÞ; 0 < b0 6 1 a:e: on ð0; LÞ: ð3:6Þ
For the sake of simplicity we choose c to be a constant, our results hold true for the case when c 2 L1ð0; LÞ
and cP c� > 0, for some constant c�. We note that condition (3.4) guarantees that the set K is not empty.

Let a : V � V ! R be the functional

aðu; vÞ ¼
Z L

0

Auxxvxx dx 8u; v 2 V : ð3:7Þ
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We now obtain a variational formulation of the mechanical problem P. To that end we assume that u, n,
and b are smooth functions satisfying Eqs. (2.2), (2.6)–(2.9). Let v 2 K be a test function and let t 2 ½0; T 
.
We multiply Eq. (2.2) by v� uðtÞ, thus

Z L

0

LAðuðtÞÞðv� uðtÞÞdx ¼
Z L

0

f ðtÞðv� uðtÞÞdxþ
Z L

0

nðtÞðv� uðtÞÞdx:

Using now Eq. (2.1), performing two integrations by parts and keeping in mind Eqs. (2.9) and (2.10) we
obtain

Z L

0

LAðuðtÞÞðv� uðtÞÞdx ¼
Z L

0

AuxxðtÞðvxx � uxxðtÞÞdx:

Moreover, from Eq. (2.6) we deduce that

nðv� uÞ ¼ ðn þ jðu� /Þb2Þðv� uÞ � jðu� /Þb2ðv� uÞ
¼ ðn þ jðu� /Þb2Þðv� /Þ þ ðn þ jðu� /Þb2Þð/ � uÞ � jðu� /Þb2ðv� uÞ
P � jðu� /Þb2ðv� uÞ;

and, therefore,

Z L

0

nðtÞðv� uðtÞÞdxP
Z L

0

jb2ðuðtÞ � /ÞðuðtÞ � vÞdx: ð3:8Þ

Thus, we obtain

aðuðtÞ; v� uðtÞÞ þ ðjb2ðtÞðuðtÞ � /Þ; v� uðtÞÞH P ðf ðtÞ; v� uðtÞÞH ; ð3:9Þ

for 06 t6 T . Since Eqs. (2.6) and (2.9) imply that uðtÞ 2 K, Eqs. (2.7), (2.8) and (3.9) yield the following
variational formulation of Problem P.

Problem PV . Find a displacement function u : ½0; T 
 ! V and an adhesion function b : ½0; T 
 ! L1ð0; LÞ
such that, for all t 2 ½0; T 
,

uðtÞ 2 K; ð3:10Þ

aðuðtÞ; v� uðtÞÞ þ ðjb2ðtÞðuðtÞ � /Þ; v� uðtÞÞH P ðf ðtÞ; v� uðtÞÞH 8 v 2 K; ð3:11Þ

b0ðtÞ þ cjðuðtÞ � /Þ2ðbðtÞÞþ ¼ 0 in XT ; ð3:12Þ

bð0Þ ¼ b0 a:e: on ð0; LÞ: ð3:13Þ

Our main result, which we establish in the next section, is the following:

Theorem 3.1. Assume that conditions (3.1)–(3.6) hold. Then, there exists a unique solution fu; bg of Problem
PV . Moreover, the solution satisfies

u 2 Cð0; T ; V Þ; b 2 C1ð0; T ; L1ð0; LÞÞ: ð3:14Þ

We conclude that, under the assumptions (3.1)–(3.6), the mechanical problem (2.2), (2.6)–(2.10) has a
unique weak solution fu; bg.
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4. Proof of Theorem 3.1

The proof of the theorem will be carried out in several steps. It is based on time-dependent variational
inequalities and a fixed point theorem. Everywhere in this section C will represent a positive generic
constant which is independent of t and b and whose value may change from line to line. For the sake of
simplicity, we assume below that / � 0, otherwise, one needs to replace uðtÞ with ðuðtÞ � /Þ in the ap-
propriate places below.

We start by defining an appropriate inner product on the space V . To this end we observe that there
exists C > 0 such that CjvjH 6 jvxjL2ð0;LÞ for all v 2 H 1ð0; LÞ satisfying vð0Þ ¼ 0, thus,

CjvjH2ð0;LÞ 6 jvxxjH 8v 2 V : ð4:1Þ

We consider now the inner product on V given by

ðu; vÞV ¼ ðuxx; vxxÞH ; ð4:2Þ

and let j:jV be the associated norm. By using Eq. (4.1) we find that j:jH2ð0;LÞ and j:jV are equivalent norms on
V and, therefore, ðV ; ð:; :ÞV Þ is a real Hilbert space.

The first step of the proof is the following simple lemma.

Lemma 4.1. Let Eqs. (3.1), (3.2) and (3.5) hold. If b 2 Cð0; T ; L1ð0; LÞÞ is given, then there exists a unique
solution u 2 Cð0; T ; V Þ which satisfies Eqs. (3.10) and (3.11), for all t 2 ½0; T 
. Moreover,

juðtÞjV 6C; ð4:3Þ

where C is independent of b.

Proof. Using Eqs. (3.1), (3.7), and (4.2) we find that a is a bilinear continuous and coercive form on V , that
is

jaðu; vÞj6CjujV jvjV 8u; v 2 V ; ð4:4Þ

aðv; vÞPCjvj2V 8v 2 V : ð4:5Þ

For all t 2 ½0; T 
, let BðtÞ : V ! V 0 be the operator

ðBðtÞu; vÞV ¼ aðu; vÞ þ ðjb2ðtÞu; vÞH 8u; v 2 V :

Using Eqs. (3.5), (4.4), and (4.5) it follows that BðtÞ is a strongly monotone Lipschitz continuous op-
erator on V , and K is a nonempty closed convex set of V. It follows from standard results (see e.g., Brezis,
1968; Duvaut and Lions, 1976; Kinderlehrer and Stampacchia, 1980 or Lions, 1969), that for each t 2 ½0; T 

there exists a unique element uðtÞ 2 V which solves Eqs. (3.10) and (3.11). Choosing v ¼ 0 in Eq. (3.11) and
using Eq. (4.5) we obtain Eq. (4.3).

Now, let t1, t2 2 ½0; T 
 and for the sake of simplicity we denote uðtiÞ ¼ ui, bðtiÞ ¼ bi, f ðtiÞ ¼ fi. Using
Eqs. (3.10), (3.11) and algebraic manipulations we find

aðu1 � u2; u1 � u2Þ þ ðkb2
1u1 � kb2

2u2; u1 � u2ÞH 6 ðf1 � f2; u1 � u2ÞH : ð4:6Þ

Now, from Eqs. (4.3), (4.5), and (4.6) we find

Cju1 � u2jV 6 jf1 � f2jH þ jb1 � b2jL1ð0;LÞjb1 þ b2jL1ð0;LÞ: ð4:7Þ

Since b 2 Cð0; T ; L1ð0; LÞÞ we obtain from Eqs. (3.2) and (4.7) that u 2 Cð0; T ; V Þ, which concludes the
proof. �
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Let ub denote the solution in Lemma 4.1, and consider the initial value problem

h0 þ cju2bðhÞþ ¼ 0 in XT ; ð4:8Þ

hð0Þ ¼ b0 a:e: on ð0; LÞ: ð4:9Þ

Clearly, under the assumptions of Theorem 3.1, there exists a unique function h ¼ hðbÞ 2
C1ð0; T ; L1ð0; LÞÞ which solves Eqs. (4.8) and (4.9). Let Z denote the closed subset of Cð0; T ; L1ð0; LÞÞ
which is defined as

Z ¼ fb 2 Cð0; T ; L1ð0; LÞÞ jbðx; tÞ 2 ½0; 1
; a:e: x 2 ð0; LÞ; for all t 2 ½0; T 
g; ð4:10Þ

and assume that Eqs. (3.1)–(3.6) hold. Then,

Lemma 4.2. If b 2 Z then hðbÞ 2 Z.

Proof. The result follows from Eq. (4.8) and the assumption that b0ðxÞ 2 ð0; 1
 for a.e. x 2 ð0; LÞ. Indeed,
Eq. (4.8) implies that for a.e. x 2 ð0; LÞ, the function t 7!hðbÞðx; tÞ is decreasing and its derivative vanishes
when ju2bhðbÞðx; tÞ6 0, implying that hðbÞðx; tÞP 0 a.e. on XT . �

We now have all the ingredients to prove Theorem 3.1. Suppose bi, i ¼ 1, 2, are two functions in Z and
let t 2 ½0; T 
. We need to compare the functions u1 ¼ ub1 and u2 ¼ ub2 .

Since b1, b2 2 Z, by using arguments similar to those used in the proof of Eq. (4.7), we find

ju1ðtÞ � u2ðtÞjV 6Cjb1ðtÞ � b2ðtÞjL1ð0;LÞ:

This implies, by the continuity of the embedding of V into L1ð0; LÞ, that
ju1ðtÞ � u2ðtÞjL1ð0;LÞ 6Cjb1ðtÞ � b2ðtÞjL1ð0;LÞ: ð4:11Þ

Now, Eqs. (4.3), (4.8), (4.9) and the continuity of the embedding of V into L1ð0; LÞ, yield

jhðb1ÞðtÞ � hðb2ÞðtÞjL1ð0;LÞ 6

Z t

0

jcju21ðsÞhðb1ÞðsÞ � cju22ðsÞhðb2ÞðsÞjL1ð0;LÞ ds

6C
Z t

0

ju1ðsÞ � u2ðsÞjL1ð0;LÞ dsþ C
Z t

0

jhðb1ÞðsÞ � hðb2ÞðsÞjL1ð0;LÞ ds:

Using a Gronwall-type inequality we obtain

jhðb1ÞðtÞ � hðb2ÞðtÞjL1ð0;LÞ 6C
Z t

0

ju1ðsÞ � u2ðsÞjL1ð0;LÞ ds: ð4:12Þ

Thus, Eqs. (4.11) and (4.12) yield

jhðb1ÞðtÞ � hðb2ÞðtÞjL1ð0;LÞ 6C
Z t

0

jb1ðsÞ � b2ðsÞjL1ð0;LÞ ds: ð4:13Þ

Iterating this inequality n times, we deduce

jhnðb1Þ � hnðb2ÞjCð0;T ;L1ð0;LÞÞ 6
CnT n

n!
jb1 � b2jCð0;T ;L1ð0;LÞÞ:

Therefore, hn is a contraction mapping on Z, for all n sufficiently large, and hence h has a unique fixed point
in Z which is the unique solution of Theorem 3.1.
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5. Models with deformable support

In this section we describe and analyze several versions of the model in which the support is deformable.
We use the so-called ‘normal compliance’ condition to describe the reaction of the foundation when u < /.
We consider the dynamic problem with and without viscosity along with the quasistatic problem. We es-
tablish existence and uniqueness results for these problems. We also consider the manner in which the
solutions of the quasistatic problems with normal compliance converge to those of the quasistatic problem
in which the support is rigid. For the sake of simplicity, and without loss of generality, we assume that
/ � 0. All the results below apply to the case when / satisfies Eq. (3.4).

We use the following well-known theorem found in Lions (1969).

Theorem 5.1. Let pP 1, q > 1 and let W � U � Y be Banach spaces with compact inclusion map i : W ! U
and continuous inclusion map i : U ! Y . Then, the set

SR ¼ fu 2 Lpð0; T ;W Þju0 2 Lqð0; T ; Y Þ; kukLpð0;T ;W Þ þ ku0kLqð0;T ;Y Þ < Rg

is precompact in Lpð0; T ;UÞ.
Also, we will use the following theorem found in Seidman (1989) and Simon (1987).

Theorem 5.2. Let q > 1 and let W, U and Y be as in Theorem 5.1. Then, the set

SRT ¼ fujkuðtÞkW þ ku0kLqð0;T ;Y Þ 6R; t 2 ½0; T 
g

is precompact in Cð0; T ;UÞ.

We consider the same setting as in Section 2, but the foundation now is deformable and its reaction force
fR depends on the beams displacement. We use a ‘normal compliance’ condition to describe it (see, e.g.,
Kikuchi and Oden, 1988; Klarbring et al., 1988), thus,

fR ¼ pðuÞ: ð5:1Þ
Here, p ¼ pð�ÞP 0 is a given decreasing, globally Lipschitz continuous function which vanishes for non-
negative values of its argument, since when u > 0 there is loss of contact. We consider the case where pð�Þ is
Lipschitz for the sake of simplicity, and more general functions are possible (cf. Kuttler and Shillor, 1999).

The total force acting on the beam consists of the external force f, the adhesive force n and the foun-
dation reaction fR. Thus, the dynamic equation of the beam in the elastic case is

v0 þ LAðuÞ ¼ f þ n þ pðuÞ in XT ; ð5:2Þ

where v is the velocity, v ¼ u0. To include the effects of viscosity, let B be a function satisfying B 2 L1ð0; LÞ,
and there exists B0 > 0 such that BPB0 a.e. on ð0; LÞ. Now, let LBðvÞ be defined similarly to LAðuÞ, rep-
resenting internal viscosity of the Kelvin–Voigt type, and adding this term in Eq. (5.2) gives

v0 þ LBðvÞ þ LAðuÞ ¼ f þ n þ pðuÞ in XT : ð5:3Þ
The associated quasistatic elastic equation is

LAðuÞ ¼ f þ n þ pðuÞ in XT : ð5:4Þ
We assume that the adhesion is described by Eq. (2.5), but the unilateral condition (2.6) does not hold

anymore, since we allow for u < 0. Next, the evolution equation for the adhesion field (2.7) is modified as
follows:

b0 þ cjððuÞþÞ
2ðbÞþ ¼ 0 in XT : ð5:5Þ
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We use ðuÞþ to ensure that only tension contributes to debonding, since compression does not affect it.
Clearly, a more general condition can be employed, such as allowing for rebonding (cf. Chau et al., 2001),
but we will not pursue it here. We also assume that the boundary conditions are given by Eqs. (2.9) and
(2.10).

Next, we define the operators, �AA, �BB, P , and Sðb; �Þ as follows:

h�AAu;wi ¼
Z L

0

Auxxwxx dx; ð5:6Þ

h�BBv;wi ¼
Z L

0

Bvxxwxx dx; ð5:7Þ

hPðuÞ;wi ¼ �
Z L

0

pðuÞwdx; ð5:8Þ

hSðb; uÞ;wi ¼
Z L

0

jb2uwdx: ð5:9Þ

Let V � L2ð0; T ; V Þ, V0 � L2ð0; T ; V 0Þ, and denote X � fv 2 V : v0 2 V0g. Proceeding as in Section 3,
we obtain from Eq. (5.5) and the boundary conditions the following abstract formulation of our problem:
Find v 2 V and b 2 Cð0; T ; L1ð0; LÞÞ, such that

ðgvÞ0 þ g�BBvþ �AAuþ Sðb; uÞ þ P ðuÞ ¼ f in V0; ð5:10Þ

b0 þ cjððuÞþÞ2ðbÞþ ¼ 0; b0 2 Cð0; T ; L1ð0; LÞÞ; ð5:11Þ

bð0Þ ¼ b0; gvð0Þ ¼ gv0; ð5:12Þ

and

uðtÞ ¼ u0 þ
Z t

0

vðsÞds: ð5:13Þ

Here, g ¼ 0; 1; when g ¼ 1 the problem is dynamic with viscosity, and when g ¼ 0 we have the quasistatic
inviscid problem. We assume that

b0ðxÞ 2 ð0; 1
; v0 2 H ; u0 2 V :

Theorem 5.3. Under the above assumptions there exists a unique solution of problem (5.10)–(5.13), for g ¼
0, 1.

Proof. In the case g ¼ 0 existence and uniqueness follow from similar considerations as in Section 4.
Therefore, we consider the case when g ¼ 1. The proof of existence and uniqueness may be carried out
along the lines presented in Section 4, too. Suppose that b 2 Cð0; T ; L1ð0; LÞÞ with bðtÞ 2 ½0; 1
 for a.e.
x 2 ð0; LÞ, is given. We consider Eq. (5.10) with given b, and note the following. The operators, �AA,
�BB : V ! V0 are monotone and linear. Indeed, for D ¼ �AA, �BB, hDu1 � Du2; u1 � u2iPCju1 � u2j2V . Also,
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Z t

0

h�AAu1 � �AAu2; v1 � v2ids ¼
Z t

0

ðAðu1xx � u2xxÞ; ðv1xx � v2xxÞÞH ds

¼ 1

2

Z t

0

d

ds
ðAðu1xx � u2xxÞ; ðu1xx � u2xxÞÞds

¼ 1

2
ðAðu1xxðtÞ � u2xxðtÞÞ; ðu1xxðtÞ � u2xxðtÞÞÞH P 0:

The operators Sðb; �Þ and P are completely continuous as mappings from X to X 0 by Theorem 5.1.
Therefore, the operator, v ! Bvþ Auþ Sðb; uÞ þ P ðuÞ is pseudomonotone as a map from X to X 0, and is
bounded as a map from V to V0. Moreover,

h�BBvþ �AAuþ Sðb; uÞ þ P ðuÞ; viV0 ;V PB0kvk2V � Cðu0ÞkvkV;

which implies that the operator is coercive. Therefore, we can apply the existence theorem of Kuttler and
Shillor (1999) and conclude that there exists a solution of the abstract problem (5.10) and (5.13). Next,
suppose vi, for i ¼ 1, 2, are two solutions of Eq. (5.10) with given b. Then, it follows from Eq. (5.10) that

1

2
jv1ðtÞ � v2ðtÞj2H þ B0

Z t

0

kv1 � v2k2V dsþ A0ku1ðtÞ � u2ðtÞk2V

þ
Z t

0

ðjb2ðsÞðu1ðsÞ � u2ðsÞÞ; v1ðsÞ � v2ðsÞÞH ds6C
Z t

0

jv1ðsÞ
�

� v2ðsÞjH ds
�2

:

Now, using the boundedness of b, Jensen’s inequality, and the compactness of the embedding of V into
H , we obtain

jv1ðtÞ � v2ðtÞj2H þ
Z t

0

kv1 � v2k2V dsþ ku1ðtÞ � u2ðtÞk2V 6C
Z t

0

jv1ðsÞ � v2ðsÞj2H ds;

which implies that v1 ¼ v2 by Gronwall’s inequality. Here, C is independent of b, for b as above having
values in ½0; 1
.

Multiplying Eq. (5.10) by v and integrating from 0 to t, we find, after routine manipulations, that

1

2
jvðtÞj2H

�
� jv0j2H

�
þ B0

Z t

0

kvk2V dsþ A0 kuðtÞk2V
�

� ku0k2V
�
þ
Z L

0

Uðuðx; tÞÞdx6
Z t

0

jf kvjds;

where U0ðrÞ ¼ �pðrÞ and UðrÞP 0. It follows from Gronwall’s inequality that there exists a constant C,
independent of b and B0, such that

jvðtÞj2H þ B0

Z t

0

kvk2V dsþ A0kuðtÞk2V 6C: ð5:14Þ

As in Section 4, we define a mapping H : Z ! Z for Z (Z given in Eq. (4.10)) as follows: For b 2 Z, let vb

and ub be the solution of Eq. (5.10) with the initial data in Eq. (5.12). Then HðbÞ 2 Z is the solution of Eq.
(5.11) with the initial data in Eq. (5.13) and u is replaced with ub. We need to consider how does H depend
on b. Let bi, i ¼ 1, 2 be two elements of Z, and denote by vi and ui the variables, vbi and ubi , respectively.
There is only one term in Eq. (5.10) containing b and from this term, along with the assumption that
bðx; tÞ 2 ½0; 1
, we obtain
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jhSðb1; u1Þ � Sðb2; u2Þ; v1 � v2ij6
Z L

0

jb2
1ðu1

���� � u2Þðv1 � v2Þdx
����

þ
Z L

0

jðb2
1

���� � b2
2Þu2ðv1 � v2Þdx

����6 jju1 � u2jH jv1 � v2jH

þ 2j
Z L

0

jb1 � b2ku2kv1 � v2jdx6 jju1 � u2jH jv1 � v2jH þ 2jC
Z L

0

jb1 � b2kv1 � v2jdx; ð5:15Þ

thanks to the inequality (5.14) and the continuity of the embedding of V into L1ð0; LÞ. Here and below, C
denotes a generic constant which is independent of b or B0. Then, we find from Eqs. (5.10), (5.15) and the
Lipschitz continuity of p, that

1

2
jv1ðtÞ � v2ðtÞj2H þ B0

Z t

0

kv1 � v2k2V dsþ A0ku1ðtÞ � u2ðtÞk2V 6C
Z t

0

ju1 � u2jH jv1 � v2jH ds

þ C
Z t

0

jb1 � b2jH jv1 � v2jH ds: ð5:16Þ

Thus,

jv1ðtÞ � v2ðtÞj2H þ 2B0

Z t

0

kv1 � v2k2V dsþ A0ku1ðtÞ � u2ðtÞk2V 6C
Z t

0

jv1 � v2j2H dsþ C
Z t

0

jb1 � b2j
2
H ds;

ð5:17Þ
which implies by Gronwall’s inequality, that

jv1ðtÞ � v2ðtÞj2H þ ku1ðtÞ � u2ðtÞk2V 6C
Z t

0

jb1 � b2j
2
H ds; ð5:18Þ

where C is now allowed to depend on T. From Eq. (5.11) we obtain

bðx; tÞ ¼ b0ðxÞ �
Z t

0

cjððuÞþÞ
2ðbÞþ ds;

and using the inequality (5.14) again along with Eq. (5.18), yields

jHb1ðx; tÞ � Hb2ðx; tÞj6C
Z t

0

ðu1Þ2þðHb1Þþ
��� � ðu2Þ2þðHb2Þþ

���ds
6C

Z t

0

jHb1ðsÞðxÞ � Hb2ðsÞðxÞjdsþ C
Z t

0

Z s

0

jb1

�
� b2j

2
H dr

�1=2

ds:

It follows from Gronwall’s inequality and Jensen’s inequality that

jHb1ðtÞ � Hb2ðtÞj
2
H 6C

Z t

0

jb1ðsÞ � b2ðsÞj
2
H ds:

Iterating this inequality, we find that for n large enough Hn is a contraction mapping on Cð0; T ;HÞ, and
therefore, H has a unique fixed point b. From the differential equation satisfied by b, we see that b,
b0 2 Cð0; T ; L1ð0; LÞÞ. Thus b is the unique solution of our problem. The proof of the theorem is now
complete. �

We now consider the dynamic inviscid ðB0 ¼ 0Þ problem: Find v 2 V and b 2 Cð0; T ; L1ð0; LÞÞ such that

v0 þ Auþ Sðb; uÞ þ P ðuÞ ¼ f in V0; ð5:19Þ
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b0 þ cjððuÞþÞ
2ðbÞþ ¼ 0; b0 2 Cð0; T ; L1ð0; LÞÞ; ð5:20Þ

bð0Þ ¼ b0; vð0Þ ¼ v0; ð5:21Þ

uðtÞ ¼ u0 þ
Z t

0

vðsÞds: ð5:22Þ

We have the following result.

Theorem 5.4. Assume that b0ðxÞ 2 ð0; 1
, u0 2 V and v0 2 H . Then, there exists a unique solution of problem
(5.19)–(5.22).

Proof. Letting B0 ¼ d, we denote by vd, ud, bd, the solution of the dynamic viscous problem, (5.10)–(5.13)
where g ¼ 1. Thus Eq. (5.10) is of the form

v0 þ Bdvþ Auþ Sðb; uÞ þ P ðuÞ ¼ f in V0; ð5:23Þ

for

hBdv;wi �
Z L

0

dvxxwxx dx: ð5:24Þ

Then estimate (5.14) takes the form

jvðtÞj2H þ d
Z t

0

kvk2V dsþ A0kuðtÞk2V 6C; ð5:25Þ

where C does not depend on d. It follows that hBdvd; vdiV 6C. Therefore, for w 2 V,

hBdvd;wiV 6 hBdvd; vdi1=2V hBdw;wi1=2V 6Cd1=2kwkV:
Thus,

Bdvd ! 0 strongly in V0; ð5:26Þ

as d ! 0: From Eq. (5.25) and the boundedness of all the operators, we conclude that there is a subse-
quence, denoted by d ! 0, such that in addition to Eq. (5.26),

v0d ! v0 weak� in V0; ð5:27Þ

vd ! v weak� in L1ð0; T ;HÞ; ð5:28Þ

ud ! u weak� in L1ð0; T ; V Þ; ð5:29Þ

where uðtÞ ¼ u0 þ
R t
0
vðsÞds: By Theorem 5.2, we may also assume that for a subsequence

ud ! u strongly in Cð0; T ;W Þ; ð5:30Þ
where V embeds compactly intoW, andW embeds continuously into Cð½0; L
Þ. This strong convergence of
ud is sufficient to conclude that

bd ! b strongly in Cð0; T ; L1ð0; LÞÞ; ð5:31Þ
where b is the solution to Eqs. (5.20) and (5.21). Thus, we also have

Sðbd; udÞ ! Sðb; uÞ strongly in L2ð0; T ;HÞ; ð5:32Þ
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P ðudÞ ! PðuÞ strongly in L2ð0; T ;HÞ: ð5:33Þ

Therefore, taking the limit as d ! 0 in Eqs. (5.10)–(5.13), with B replaced by Bd and g ¼ 1, yields a
solution for problem (5.19)–(5.22). It only remains to verify uniqueness of the solution.

Suppose vi and bi, i ¼ 1, 2, are two solutions of Eqs. (5.19)–(5.22). It follows from Eq. (5.16), along with
the Lipschitz continuity of p, there exists a constant C, independent of vi, such that

1

2
jv1ðtÞ � v2ðtÞj2H þ A0ku1ðtÞ � u2ðtÞk2V 6C

Z t

0

ju1 � u2jH jv1 � v2jH dsþ C
Z t

0

jb1 � b2jH jv1 � v2jH ds6C

�
Z t

0

ju1 � u2j2H dsþ C
Z t

0

jv1 � v2j2H dsþ C
Z t

0

jb1 � b2j
2
H ds: ð5:34Þ

Now, from Eqs. (5.20) and (5.14), which is an estimate of kuðtÞkL1ð0;LÞ due to the continuity of the
embedding of V into L1ð0; LÞ, we obtain

1

2
jb1ðtÞ � b2ðtÞj

2
H 6C

Z t

0

ju1 � u2jH jb1 � b2jH ds6C
Z t

0

ju1 � u2j2H dsþ C
Z t

0

jb1 � b2j
2
H ds: ð5:35Þ

Adding Eqs. (5.34) and (5.35) and using Gronwall’s inequality yields v1 ¼ v2, u1 ¼ u2, and b1 ¼ b2. �

We consider next the manner in which solutions of the quasistatic problems with normal compliance
approach the solution of the quasistatic problem of Section 3, in which no penetration is allowed. Writing
the problem of Section 3 in terms of operators, as in this section, we obtain the following problem,

uðtÞ 2 K; ð5:36Þ

hAu; u� wi þ hSðb; uÞ; u� wi6 ðf ðtÞ; u� wÞH ; w 2 K ð5:37Þ

b0 þ cju2bþ ¼ 0; b; b0 2 Cð0; T ; L1ð0; LÞÞ; ð5:38Þ

bð0ÞðxÞ ¼ b0ðxÞ 2 ð0; 1
 a:e: on ð0; LÞ: ð5:39Þ

We denote by ue, be the solution of the quasistatic normal compliance problem in which the normal
compliance is penalized by multiplying it with 1/e, as e ! 0. Thus,

Auþ Sðb; uÞ þ 1

e
P ðuÞ ¼ f ; ð5:40Þ

b0 þ cjððuÞþÞ
2ðbÞþ ¼ 0; b; b0 2 Cð0; T ; L1ð0; LÞÞ; ð5:41Þ

bð0ÞðxÞ ¼ b0ðxÞ 2 ð0; 1
 a:e: on ð0; LÞ: ð5:42Þ

We let W be any space for which the embedding of V into W is compact. We have the following con-
vergence result, which guarantees that as the support becomes more rigid the solution gets closer to that of
the problem with a rigid obstacle. The main idea of the proof is in establishing the equicontinuity of the
sequence of the solutions fueg for the problems with normal compliance, and using the uniqueness of the
limit.

Theorem 5.5. The solutions ue of problems (5.40)–(5.42) converge strongly in Cð0; T ;W Þ and weak� in
L1ð0; T ; V Þ to the solution of problem (5.36)–(5.39).

Proof. Using the fact that 0 2 K, we multiply Eq. (5.40) by ue and let w ¼ 0 in Eq. (5.37) and obtain the
estimates
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kukV ; kuekV 6C; ð5:43Þ
for a constant C that is independent of e.

To establish the equicontinuity of fueg we need to consider the continuity of the map t ! ueðtÞ. We let
u ¼ ue be the solution of Eq. (5.40), and for the sake of simplicity we do not indicate explicitly the de-
pendence on x 2 ½0; L
. We have, for s, t 2 ½0; T 
 and t < s, that

AuðsÞ � AuðtÞ þ SðbðsÞ; uðsÞÞ � SðbðtÞ; uðtÞÞ þ 1

e
ðP ðuðsÞÞ � P ðuðtÞÞÞ ¼ f ðsÞ � f ðtÞ:

Multiplying this expression by uðsÞ � uðtÞ, integrating and using the estimate (5.43) along with the
definition of the map Sðb; uÞ, we find

kuðsÞ � uðtÞk2V � jCjbðsÞ � bðtÞjH juðsÞ � uðtÞjH 6 jf ðsÞ � f ðtÞjH juðsÞ � uðtÞjH ;
where here and below, C is a generic constant which is independent of e or x 2 ½0; L
. Therefore,

kuðsÞ � uðtÞk2V 6C jf ðsÞ
�

� f ðtÞj2H þ jbðsÞ � bðtÞj2H
�
: ð5:44Þ

Now, we consider the differential equation satisfied by b. From Eq. (5.41) we have

bðsÞ � bðtÞ ¼
Z s

t
ð�cju2þbþÞdr;

and so

jbðsÞ � bðtÞj6Cjs� tj:
Therefore, Eq. (5.44) implies

kuðsÞ � uðtÞk2V 6C jf ðsÞ
�

� f ðtÞj2H þ js� tj2
�
;

which shows that the set fue} is an equicontinuous subset of Cð0; T ; V Þ since by assumption (3.2)
f 2 Cð0; T ;HÞ. In addition, Eq. (5.43) implies that the set fueg is uniformly bounded. It follows from the
Ascoli–Arzela theorem that fueg is precompact in Cð0; T ;W Þ. By standard arguments there exists a sub-
sequence ek ! 0, such that uek ! u weak� in L1ð0; T ; V Þ and strongly in Cð0; T ;W Þ, where u is the solution
of problem (5.36)–(5.39). Since the solution of problem (5.36)–(5.39) is unique, it follows that it is not
necessary to take a subsequence, and the whole sequence of solutions of the penalized problems (5.40)–
(5.42) converges weak� in L1ð0; T ; V Þ and strongly in Cð0; T ;W Þ, whenever W is a space as described
above. �

6. Semi-discrete approximation of the quasistatic problem

We now turn to numerical approximations of the quasistatic elastic problem with normal compliance
studied in the previous section. We establish the convergence of the scheme and obtain an error estimate.
We analyze first a spatially semi-discrete scheme, while a fully discrete scheme is the subject of the next
section. The dynamic problem will be investigated in the future.

We note that the numerical analysis of the quasistatic problem with the Signorini non-penetration
condition (2.6), studied in Sections 2 and 3, is hampered by the following difficulty. The solution of the
problem lies in H 2ð0; LÞ and we require, in addition, that 06 u, but a general function satisfying this in-
equality does not lie in H 2ð0; LÞ, since it may be only Lipschitz continuous. This means that a general
approximation of the problem will either violate the Signorini condition or will not be in V , so in either case
the necessary estimates cannot be obtained.
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The problem is to find ðu; bÞ such that

aðuðtÞ; vÞ þ ðjb2ðtÞuðtÞ; vÞH ¼ ðf ðtÞ þ pðuðtÞÞ; vÞH for all v 2 V ; ð6:1Þ

b0 þ cjðuþÞ2ðbÞþ ¼ 0 in XT ; ð6:2Þ

bð0Þ ¼ b0 a:e: on ð0; LÞ: ð6:3Þ

We introduce a partition of the spatial domain ½0; L
: 0 ¼ x0 < x1 < � � � < xM ¼ L. Denote Ii ¼ ½xi�1; xi

and hi ¼ xi � xi�1 for i ¼ 1; . . . ;M , and h ¼ max16 i6M hi the meshsize. We define the finite element spaces

V h ¼ fvh 2 V jvhjIi is cubic; 16 i6Mg; ð6:4Þ

Qh ¼ fqh 2 L1ð0; LÞjqhjIi is constant; 16 i6Mg: ð6:5Þ

Thus, V h consists of piecewise cubics, and Qh of piecewise constant functions. We observe that an equiv-
alent definition of the space V h is

V h ¼ fvh 2 C1ð½0; L
Þjvhð0Þ ¼ vhxð0Þ ¼ 0; vhjIi is cubic; 16 i6Mg:

We define a piecewise averaging operator Ph : L1ð0; LÞ ! Qh by

PhujIi ¼
1

jIij

Z
Ii

udx; 16 i6M ; u 2 L1ð0; LÞ: ð6:6Þ

Obviously, the operator Ph has the property

kPhukW 6 kukW 8u 2 W ; ð6:7Þ

whereW is any one of L1ð0; LÞ, L1ðIiÞ, H or L2ðIiÞ. Then, a spatially semi-discrete scheme of the quasistatic
problem with normal compliance is:

Problem Ph
NC. Find uh : ½0; T 
 ! V h and bh : ½0; T 
 ! Qh such that for all t 2 ½0; T 
,

aðuhðtÞ; vhÞ þ ðjðbhÞ2uhðtÞ; vhÞH ¼ f ðtÞ
�

þ pðuhðtÞÞ; vh
	
H

8vh 2 V h; ð6:8Þ

ðbhÞ0 þ cPh½jðuhþÞ
2
ðbhÞþ ¼ 0 in XT ; ð6:9Þ

bhð0Þ ¼ bh
0 on ð0; LÞ; ð6:10Þ

where bh
0 2 Qh is an approximation of b0.

Using the proof technique of Section 5, it is not difficult to show that the semi-discrete problem has
a unique solution ðuh; bhÞ 2 Cð0; T ; V hÞ � C1ð0; T ;QhÞ and for some constant C > 0, we have

kuhkCð0;T ;V Þ 6C 8h > 0: ð6:11Þ

Our purpose here is to analyze the convergence, and derive error estimates for the solution of Ph
NC. Since

the function p is decreasing and globally Lipschitz, we have

ðpðw1Þ � pðw2ÞÞðw1 � w2Þ6 0; ð6:12Þ

jpðw1Þ � pðw2Þj6 Lpjw1 � w2j; ð6:13Þ

for some constant Lp > 0 and for all w1, w2 2 R.
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Let us derive now error relations. From Eqs. (6.1) and (6.8) we obtain, for t 2 ½0; T 
. The first error
relation:

aðuðtÞ � uhðtÞ; vhÞ ¼ ðpðuðtÞÞ � pðuhðtÞÞ; vhÞH � ðjðbðtÞ2uðtÞ � bhðtÞ2uhðtÞÞ; vhÞH 8vh 2 V h: ð6:14Þ
Integrating Eq. (6.2) from 0 to t and using the initial value (6.3), yields

bðtÞ ¼ b0 � c
Z t

0

juþðsÞ2bþðsÞds: ð6:15Þ

Similarly, Eqs. (6.9) and (6.10) imply

bhðtÞ ¼ bh
0 � c

Z t

0

Ph½juhþðsÞ
2
bh

þðsÞds: ð6:16Þ

Subtracting Eq. (6.16) from Eq. (6.15), we get the second error relation:

bðtÞ � bhðtÞ ¼ b0 � bh
0 � c

Z t

0

juþðsÞ2bþðsÞ
�

�Ph½juhþðsÞ
2
bh

þðsÞ
�
ds: ð6:17Þ

For vh 2 Cð0; T ; V hÞ, we write

aðuðtÞ � uhðtÞ; uðtÞ � uhðtÞÞ ¼ aðuðtÞ � uhðtÞ; uðtÞ � vhðtÞÞ þ aðuðtÞ � uhðtÞ; vhðtÞ � uhðtÞÞ:
Using Eq. (6.14), we have

aðuðtÞ � uhðtÞ; vhðtÞ � uhðtÞÞ ¼ ðpðuðtÞÞ � pðuhðtÞÞ; vhðtÞ � uhðtÞÞH � ðjðbðtÞ2uðtÞ

� ðbhðtÞÞ2uhðtÞÞ; vhðtÞ � uhðtÞÞH : ð6:18Þ

Now, by the properties (6.12) and (6.13),

ðpðuðtÞÞ � pðuhðtÞÞ; vhðtÞ � uhðtÞÞH 6 ðpðuðtÞÞ � pðvhðtÞÞ; vhðtÞ � uhðtÞÞH
6CkuðtÞ � vhðtÞkHkvhðtÞ � uhðtÞkH
6CkuðtÞ � vhðtÞkH ðkuðtÞ � vhðtÞkH þ kuðtÞ � uhðtÞkHÞ

6CkuðtÞ � vhðtÞk2H þ d1kuðtÞ � uhðtÞk2H ;

with a small number d1 > 0 to be chosen later. Also,

�ðjðbðtÞ2uðtÞ � ðbhðtÞÞ2uhðtÞÞ; vhðtÞ � uhðtÞÞ6 � ðjðbðtÞ2uðtÞ � ðbhðtÞÞ2vhðtÞÞ; vhðtÞ � uhðtÞÞ

¼ �ðjðbðtÞ2 � ðbhðtÞÞ2ÞuðtÞ þ jðbhðtÞÞ2ðuðtÞ � vhðtÞÞ; vhðtÞ � uhðtÞÞ6CkuðtÞ � vhðtÞk2H þ CkbðtÞ

� bhðtÞk2H þ d2kuðtÞ � uhðtÞk2H ;

with a small number d2 > 0 to be chosen below. From Eq. (6.18) and the V-ellipticity of að�; �Þ we have

kuðtÞ � uhðtÞk2V 6CðkuðtÞ � vhðtÞk2V þ kbðtÞ � bhðtÞk2H Þ þ Cðd1 þ d2ÞkuðtÞ � uhðtÞk2H :

Choosing d1 and d2 sufficiently small so that Cðd1 þ d2Þ < 1, we obtain

kuðtÞ � uhðtÞkV 6CðkuðtÞ � vhðtÞkV þ kbðtÞ � bhðtÞkH Þ: ð6:19Þ
We now derive an estimate for bðtÞ � bhðtÞ based on Eq. (6.17). Write

juþðsÞ2bþðsÞ �Ph½juhþðsÞ
2
bh

þðsÞ ¼ Ph½juhþðsÞ
2
ðbþðsÞ � bh

þðsÞÞ þ bþðsÞPh½jðuþðsÞ2 � ðuhþðsÞÞ
2Þ


þ bþðsÞðjuþðsÞ
2 �Ph½juþðsÞ2
Þ:
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Then Eqs. (6.7) and (6.11) imply that jPh½juhþðsÞ
2
j6C for h > 0, and for all s 2 ½0; T 
. Hence,

jjuþðsÞ2bþðsÞ �Ph½juhþðsÞ
2
bh

þðsÞj6CjbþðsÞ � bh
þðsÞj þ CjPh½jðuþðsÞ2 � uhþðsÞ

2Þ
j

þ CjjuþðsÞ2 �Ph½juþðsÞ2
j: ð6:20Þ

Then, from Eq. (6.17), we get

kbðtÞ � bhðtÞkH 6 kb0 � bh
0kH þ C

Z t

0

ðkbðsÞ � bhðsÞkH þ kuðsÞ2 � uhðsÞ2kH

þ kjuþðsÞ2 �Ph½juþðsÞ2
kH Þds:
and then

kbðtÞ � bhðtÞkH 6 kb0 � bh
0kH þ C

Z t

0

ðkbðsÞ � bhðsÞkH þ kuðsÞ � uhðsÞkH þ kjuþðsÞ2

�Ph½juþðsÞ2
kH Þds: ð6:21Þ

Combining Eqs. (6.19) and (6.21), we find

kuðtÞ � uhðtÞkV þ kbðtÞ � bhðtÞkH 6Cðkb0 � bh
0kH þ kuðtÞ � vhðtÞkV þ kju2þ �Phðju2þÞkL1ð0;T ;HÞÞ

þ C
Z t

0

kbðsÞ
�

� bhðsÞkH þ kuðsÞ � uhðsÞkV
	
ds: ð6:22Þ

Applying the Gronwall inequality, we obtain

ku� uhkL1ð0;T ;V Þ þ kb � bhkL1ð0;T ;HÞ 6Cðkb0 � bh
0kH þ ku� vhkL1ð0;T ;V Þ þ kju2þ �Phðju2þÞkL1ð0;T ;HÞÞ;

ð6:23Þ
for all vh 2 Cð0; T ; V hÞ.

Since u 2 Cð0; T ; V Þ, we have u2þ 2 Cð0; T ;H 1ð0; LÞÞ. Under the additional assumption j 2 H 1ð0; LÞ, we
have (cf. Ciarlet, 1978; Quarteroni and Valli, 1994)

kju2þ �Phðju2þÞkL1ð0;T ;HÞ 6Ch;

where C is proportional to ku2þkCð0;T ;H1ð0;LÞÞ:
Since vh 2 Cð0; T ; V hÞ is arbitrary in Eq. (6.23), by following the arguments in Han and Reddy (1999,

Chapter 11) we obtain the next theorem.

Theorem 6.1. Assume the initial value bh
0 is chosen so that

kb0 � bh
0kH ! 0 as h ! 0: ð6:24Þ

Then the semi-discrete approximation method converges,

ku� uhkL1ð0;T ;V Þ þ kb � bhkL1ð0;T ;HÞ ! 0 as h ! 0:

If, in addition, we assume j 2 H 1ð0;LÞ and u 2 L1ð0; T ;H 3ð0; LÞÞ and
kb0 � bh

0kH 6Ch; ð6:25Þ
then we have the error estimate

ku� uhkL1ð0;T ;V Þ þ kb � bhkL1ð0;T ;HÞ 6Ch:

We note that if we take bh
0 ¼ Phb0, then the condition (6.24) is guaranteed for b0 2 H while the condition

(6.25) is guaranteed for b0 2 H 1ð0; LÞ.
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7. Fully discrete approximations

To develop a fully discrete scheme, in addition to the partition of the spatial domain [0; L] introduced in
the previous section, we need a partition of the time interval [0; T ]: 0 ¼ t0 < t1 < � � � < tN ¼ T : We denote
the step-size kn ¼ tn � tn�1 for n ¼ 1; . . . ;N :We allow non-uniform partition of the time interval, and denote
by k ¼ maxn kn the maximal step-size. For a continuous function wðtÞ, we use the notation wn ¼ wðtnÞ.

A fully discrete scheme for the quasistatic problem with normal compliance is:

Problem Phk
NC. Find fuhkn ; b

hk
n g

N
n¼0 � V h � Qh such that for n ¼ 1; . . . ;N ,

aðuhkn ; vhÞ þ ðjðbhk
n Þ

2uhkn ; v
hÞ ¼ ðfn þ pðuhkn Þ; vhÞ 8vh 2 V h; ð7:1Þ

bhk
n � bhk

n�1 þ cknP
h½jðuhkn�1Þ

2
þ
ðb

hk
n�1Þþ ¼ 0; ð7:2Þ

and

uhk0 ¼ uh0; b
hk
0 ¼ bh

0 on ð0; LÞ; ð7:3Þ

where bh
0 2 Qh is an approximation of b0 and uh0 2 V h.

Here, uh0 2 V h is an artificial initial value required by the fully discrete scheme. This value is needed in the
explicit discretization (7.2) with n ¼ 1: Such an artificial initial value can be avoided if we replace Eq. (7.2)
by the implicit discretization

bhk
n þ cknP

h½jðuhkn Þ
2
þ
ðb

hk
n�1Þþ ¼ bhk

n�1:

However, then this scheme is much more difficult to analyze or use. Although we use the symbol uh0, it does
not represent an approximation of uð0Þ: Moreover, as the error analysis below suggests, we have the
freedom to use any value in a bounded set for uh0 (e.g., u

h
0 ¼ 0) without decreasing the convergence order of

the method.
The fully discrete solution exits and is unique, and for some constant c1, C2 > 0,

�c1k6 bhk
n 6 1; kuhkn kV 6C2; n ¼ 0; 1; . . . ;N ; 8h; k > 0:

From Eqs. (6.1) and (7.1) we have the first error relation,

aðun � uhkn ; v
hÞ ¼ ðpðunÞ � pðuhkn Þ; vhÞ � ðjðb2

nun � ðbhk
n Þ

2uhkn Þ; vhÞ 8vh 2 V h: ð7:4Þ

From Eqs. (7.2) and (7.3), we have

bhk
n ¼ bh

0 � c
Xn

j¼1

kjP
h½jðuhkj�1Þ

2
þ
ðb

hk
j�1Þþ: ð7:5Þ

Combining Eq. (6.15) at t ¼ tn and Eq. (7.5) we obtain the second error relation,

bn � bhk
n ¼ b0 � bh

0 � c
Xn

j¼1

Z tj

tj�1

½juþðsÞ2bþðsÞ �Ph½jðuhkj�1Þ
2
þ
ðb

hk
j�1Þþ
ds: ð7:6Þ

Similarly to the arguments leading to Eq. (6.19), we conclude from Eq. (7.4) that

kun � uhkn kV 6C kun
�

� vhnkV þ kbn � bhk
n kH

	
; ð7:7Þ

for any vhn 2 V h: Here and below, C is a positive constant independent of k or h. Writing
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juþðsÞ2bþðsÞ �Ph½jðuhkj�1Þ
2
þ
ðb

hk
j�1Þþ ¼ jðuj�1Þ2þ½bþðsÞ � ðbj�1Þþ
 þ j½uþðsÞ þ ðuj�1Þþ
bþðsÞ½uþðsÞ

� ðuj�1Þþ
 þ jðuj�1Þ2þðbj�1Þþ �Ph½jðuhkj�1Þ
2
þ
ðb

hk
j�1Þþ;

and using Eq. (6.20), we obtain the following inequality from Eq. (7.6):

kbn � bhk
n kH 6 kb0 � bh

0kH þ C
Xn

j¼1

Z tj

tj�1

ðkbþðsÞ � ðbj�1ÞþkH þ kuþðsÞ � ðuj�1ÞþkH Þds

þ C
Xn

j¼1

kjðkbj�1 � bhk
j�1kH þ kuj�1 � uhkj�1kH þ kjðuj�1Þ2þ �Ph½jðuj�1Þ2þ
kHÞ: ð7:8Þ

Combining Eqs. (7.7) and (7.8) leads to

jjun � uhkn jjV þ jjbn � bhk
n jjH 6Cjjb0 � bh

0jjH þ Cjjun � vhnjjV þ C
Xn

j¼1

Z tj

tj�1

ðjjbþðsÞ � ðbj�1ÞþjjH þ jjuþðsÞ

� ðuj�1ÞþjjHÞdsþ C
Xn

j¼1

kjjjjðuj�1Þ2þ �Ph½jðuj�1Þ2þ
jjH þ C
Xn

j¼1

kj jjbj�1

�
� bhk

j�1jjH þ jjuj�1 � uhkj�1jjH
�
:

Since vhn is arbitrary in V h, applying a discrete Gronwall inequality (cf. Han and Sofonea (2000), Lemma
4.1) we have

max
16 n6N

jjun
�

� uhkn jjV þ jjbn � bhk
n jjH

�
6Cjjb0 � bh

0jjH þ Ckjjuð0Þ � uh0jjH þ C
XN
j¼1

Z tj

tj�1

jjbþðsÞ
�

� ðbj�1ÞþjjH þ jjuþðsÞ � ðuj�1ÞþjjH
	
dsþ C

XN
j¼1

kjjjjðuj�1Þ2þ �Ph½jðuj�1Þ2þ
jjH

þ C max
16 n6N

inf
vhn2V h

jjun � vhnjjV : ð7:9Þ

Inequality (7.9) is the basis for convergence analysis and error estimation. Since uþ, bþ 2 Cð0; T ;HÞ,
then uþðsÞ and bþðsÞ are uniformly continuous on ½0; T 
 in the norm jj � jjH : Hence,

XN
j¼1

Z tj

tj�1

jjbþðsÞ
�

� ðbj�1ÞþjjH þ jjuþðsÞ � ðuj�1ÞþjjH
	
ds ! 0 as k ! 0:

Under the assumption ðuþÞ0; ðbþÞ
0 2 W 1;1ð0; T ;HÞ, we have

XN
j¼1

Z tj

tj�1

jjbþðsÞ
�

� ðbj�1ÞþjjH þ jjuþðsÞ � ðuj�1ÞþkH
	
ds6Ck:

Summarizing our findings, we have the following result concerning convergence and convergence order of
the fully discrete scheme.

Theorem 7.1. Assume jjuh0jjH is uniformly bounded with respect to h and the initial value bh
0 is chosen so that

jjb0 � bh
0jjH ! 0 as h ! 0: ð7:10Þ

Then, the fully discrete method converges, thus

max
16 n6N

jjun
�

� uhkn jjV þ jjbn � bhk
n jjH

�
! 0 as h; k ! 0:
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If, in addition, we assume j 2 H 1ð0; LÞ, u 2 L1ð0; T ;H 3ð0; LÞÞ, ðuþÞ0, ðbþÞ
0 2 W 1;1ð0; T ;HÞ, jjuh0jjH is

uniformly bounded with respect to h and

jjb0 � bh
0jjH 6Ch; ð7:11Þ

then, we have the error estimate

max
16 n6N

jjun
�

� uhkn jjV þ jjbn � bhk
n jjH

�
6Cðhþ kÞ:

Again we note that if we take bh
0 ¼ Phb0, then conditions (7.10) and (7.11) are easily satisfied.
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