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Abstract

Dynamic and quasistatic processes of contact with adhesion between an elastic or viscoelastic beam and a foundation
are considered. The contact is modeled with the Signorini condition when the foundation is rigid, and with normal
compliance when it is deformable. The adhesion is modeled by introducing the bonding function f3, the evolution of
which is described by an ordinary differential equation. The existence and uniqueness of the weak solution for each of
the problems is established using the theory of variational inequalities, fixed point arguments and the existence and
uniqueness result in Commun. Contemp. Math. 1(1) (1999) 87-123. The numerical approximations of the quasistatic
problem with normal compliance are considered, based on semi-discrete and fully discrete schemes. The convergence of
the solutions of the discretized schemes is proved and error estimates for these approximate solutions are derived. © 2002
Elsevier Science Ltd. All rights reserved.

Keywords: Dynamic or quasistatic contact; Beam; Signorini condition; Normal compliance; Adhesion; Weak solutions; Semi-discrete
and fully-discrete schemes; Error estimates

1. Introduction

Processes of adhesion are very important in industry, especially when composite materials are involved.
There exists extensive engineering literature on various aspects of the subject. However, general mathe-
matically sound models are very recent. A novel approach to the modeling of contact with adhesion, based
on thermodynamic derivation, can be found in Frémond (1982, 1987). There, the adhesive contact process
has been modeled by the introduction of an internal variable, the adhesion field f, that measures the
fraction of active bonds.

Recent modeling, analysis, and numerical simulations of adhesive contact with or without friction can be
found in Chau et al. (2001, in preparation), Raous et al. (1999) and references therein. The static contact
problem for the elastoplastic beam can be found in Khludnev and Hoffmann (1992). In Chau et al. (2001)
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the dynamic frictionless adhesive contact problem has been modeled and analyzed, and the quasistatic
version has been considered in Chau et al. (in preparation) where numerical simulations have been pre-
sented. The problem of adhesive contact with friction can be found in Raous et al. (1999) where the
modeling, based on thermodynamic principles, can be found, and numerical analysis and simulations
presented.

This work deals with the adhesive contact between a beam and a foundation. The beam is assumed to be
either elastic or viscoelastic, and the obstacle either rigid or deformable. Our interest lies in the description
and analysis of the dynamic or quasistatic processes of contact when adhesion takes place during contact.
We also describe convergent semi-discrete and fully discrete numerical schemes for the quasistatic problem
with deformable foundation. We note that very recent results on quasistatic contact of an elastic body can
be found in Andersson (1999, 2000). In the first paper the normal compliance contact condition is em-
ployed, and in the second paper the author obtained the Signorini condition by passing to the normal
compliance limit.

The paper is organized as follows: In Section 2, we describe the classical model for the process of ad-
hesive quasistatic contact between an elastic beam and a rigid foundation. In Section 3, we present the
variational formulation of the problem, list the assumptions on the problem data, and state an existence
and uniqueness result in Theorem 3.1. The proof of the Theorem is given in Section 4, and is based on the
theory of time-dependent variational inequalities and the Banach fixed point theorem. In Section 5, we
present dynamic and quasistatic models for adhesive contact between a viscoelastic or an elastic beam and a
deformable foundation. The reaction force is modeled with the ‘normal compliance’ condition. We prove
the existence of the unique solution to each of the problems. Moreover, we show that in the quasistatic case
when the foundation becomes stiffer the solutions approach the solution of the problem with a rigid
foundation. In Section 6 we consider the spatially semi-discrete approximation of the quasistatic problem
with normal compliance. We show that the discretized approximations converge to the solution. Under
additional regularity assumption we also establish the rate of convergence. Finally, in Section 7, we obtain
similar results for the fully discrete problem.

2. The model

In this section, we construct a model for the quasistatic contact process with adhesion. We consider a
linearly elastic beam of length L that is clamped at its left end while the right end is free. The beam is being
acted upon by an applied force of (linear) density f, and it may come in adhesive contact with a rigid
foundation below it. The setting is depicted in Fig. 1. The cases of a viscoelastic beam, dynamic process or a
deformable foundation will be described in Section 5.

Fig. 1. The setting of the problem.
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We denote Q7 = (0,L) x (0,7), for T > 0, and let u = u(x, ) represent the vertical displacement of the
beam, at (x,¢) € Qr. We assume that the obstacle is described by the function y = ¢(x), for 0 <x < L. We
denote 4 = EI, where [ is the beam’s moment of inertia and E the Young modulus, and let L,(«) be the
function

Ly(u) _aa—;<A%). (2.1)

We assume, first, that the acting forces vary slowly in time and, therefore, the process is quasistatic.
Then, the equation of motion for the beam is

LA(H) :f"‘é in QT, (22)

where ¢ = &(x, ¢) denotes the reaction force of the foundation and the adhesion force. The rigid foundation
restricts the motion of the beam to displacements above it, thus

u>¢ in Qr, (2.3)

which represents a non-penetration condition. When contact takes place the foundation’s reaction force £ is
directed upward,

u=¢=£E=20 in Qr. (2.4)

We now describe the adhesion process, following Frémond (1982, 1987). We introduce the internal state
variable f§ = fi(x, ), the ‘bonding field’, which measures the fraction of the active bonds between the beam
and the foundation. When ff = 1 at a point the adhesion is complete; f = 0 means that all the bonds are
severed and there is no adhesion, and 0 < f§ < 1 represents the state of partial bonding. We suppose that the
adhesive resistance is active when the force is directed upwards, trying to separate the beam from the
foundation, and this restoring force is proportional to the distance from the obstacle and to *. Therefore,

u>¢p=¢=—ku—¢)p* in Qr, (2.5)

(see also Raous et al., 1999). Here, x > 0 represents the interface stiffness when the adhesion is complete,
and xf* is the ‘spring constant’ of the bonding field.
Now, conditions (2.3)—(2.5) may be written in the following complementary form:

uz¢, Er—@)p =0, (u—@)(E+ru—¢)f)=0 in Q. (2.6)
Next, following Raous et al. (1999) we assume that the evolution of the adhesion field is given by
B =—ye(u—)(p), inQr, 27

where 7 is the adhesion rate, assumed to be a positive constant, and r, = max{r,0} denotes the positive
part of . We use the latter to ensure that f§ does not become negative. In Eq. (2.7), and everywhere in the
sequel, a prime represents the time derivative.

We note that in Eq. (2.7) once debonding takes place there is no rebonding, i.e., f/ <0. If we deal with a
process where rebonding can happen, condition (2.7) had to be modified accordingly (see e.g., Chau et al.
(2001)).

To complete the model we prescribe appropriate initial and boundary conditions. The initial condition
takes the from

ﬁ('x7 0) = BO(X) fOf X € (OvL)a (28)
where f3, represents the initial bonding field. The beam is rigidly attached as its left end, thus,
u(0,¢) =u,(0,£)) =0 forte|0,T]. (2.9)
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In this work, subscripts x, xx, and xxx denote the first, second and third partial derivatives with respect
to x, respectively. There are no moments acting on the free end of the beam, thus,
U (L, 1) = ey (L,t) =0 for ¢ € [0, 7). (2.10)
The classical statement of the problem of quasistatic adhesive contact of a beam with a rigid obstacle is:

Problem P. Find a displacement function u : Q; — R and an adhesion function f: Q; — R such that
Egs. (2.2), (2.6)(2.10) hold.

3. Variational formulation and statement of results

We deal with a contact or obstacle problem, and it is well known that there exists a regularity ceiling for
the solutions which, generally, prevents them from having all the classical derivatives needed for the
classical formulation to make sense. Therefore, we proceed to derive a weak or variational formulation of
the problem.

First, we introduce additional notation. We use standard notation for 2”7 and Sobolev spaces (see e.g.,
Adams, 1975; Tonescu and Sofonea, 1993; Lions and Magenes, 1972) and let V" be the closed subspace of
H*(0,L) given by

V = {v € H*(0,L)]v(0) = v,(0) = 0}.

We denote by H the space L?(0,L) and by (-,-),,| - |, its inner product and the associate norm, re-
spectively. Let K denote the convex subset of V" defined by

K={veVjv=¢on]0L]}
If (X,||y) is a real normed space, we denote by C(0, T; X) and C'(0, T; X) the space of continuous and
continuously differentiable functions from [0, 7] to X, with the respective norms

— . !
|u|C(O,T;X) = trgg;‘] |u(t)| |M‘C1(O,T;V) = 21[31’5] |u(t)]y + }gg% |/ (2)] -

In the study of problem P we assume the following on the data:

A4 € L*(0,L) and there exists 4y > 0 such that 4 > 4, a.e. on (0,L), (3.1)
f€C(0,T;L*(0,L)), (3.2)
y = constant > 0, (3.3)
¢ € C'(0,L), ¢(0)<0, and if ¢(0) = 0 then ¢'(0) <0, (3.4)
k€ L*(0,L), k=0ae. on (0,L), (3.5)
Bo e L*(0,L), 0<fy<lae. on(0,L). (3.6)
For the sake of simplicity we choose y to be a constant, our results hold true for the case when y € L*(0, L)

and y >y, > 0, for some constant y,. We note that condition (3.4) guarantees that the set K is not empty.
Let a: V x V — R be the functional

L
a(u,v) :/ Au v dx Yu,v € V. (3.7)
0
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We now obtain a variational formulation of the mechanical problem P. To that end we assume that u, &,
and f§ are smooth functions satisfying Egs. (2.2), (2.6)~(2.9). Let v € K be a test function and let ¢ € [0, 7.
We multiply Eq. (2.2) by v — u(), thus

/0 Ly (u(t)) (v — u(1)) dx = / £ — u(0) dx + / E0) (v — u(1)) d.

Using now Eq. (2.1), performing two integrations by parts and keeping in mind Eqgs. (2.9) and (2.10) we
obtain

L L
/ La(u(®) (v — u(t)) dx = / At (1) (0 — (1)) dx.
0 0
Moreover, from Eq. (2.6) we deduce that

o —u) = (E+x(u— ) (0 —u) — k(u— §)p*(v —u)
= (&4 w(u—¢)F) (0 — @) + (E+k(u— §)B)(§ — u) — x(u — §)B*(v — u)
> —k(u— ) v —u),

and, therefore,

/0 £ — u(r)) dv > / KB (ult) - B)(ult) — v)dx. (3.8)
Thus, we obtain

a(u(t), v —u(t)) + (kB (1) (u(r) = @), 0 — () = (£(1),0 = u(®), (3.9)

for 0 < ¢ < T. Since Egs. (2.6) and (2.9) imply that u(¢) € K, Eqgs. (2.7), (2.8) and (3.9) yield the following
variational formulation of Problem P.

Problem Pj. Find a displacement function u : [0,7] — ¥ and an adhesion function f§: [0, 7] — L>(0,L)
such that, for all z € [0, 7],

u(t) €K, (3.10)
a(u(t),v —u(t)) + (B (1) (u(t) = @), 0 —u(t); = (f(1),0 = u(r)), Vve K, (3.11)
B(6) +yic(u(t) — ) (B(1), =0 in Qr, (3.12)
(0) =B, ae. on (0,L). (3.13)

Our main result, which we establish in the next section, is the following:

Theorem 3.1. Assume that conditions (3.1)—(3.6) hold. Then, there exists a unique solution {u, f} of Problem
Py. Moreover, the solution satisfies

ueC0,T;v), BeC'0,T;L=(0,L)). (3.14)

We conclude that, under the assumptions (3.1)—(3.6), the mechanical problem (2.2), (2.6)—(2.10) has a
unique weak solution {u, fi}.
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4. Proof of Theorem 3.1

The proof of the theorem will be carried out in several steps. It is based on time-dependent variational
inequalities and a fixed point theorem. Everywhere in this section C will represent a positive generic
constant which is independent of 7 and f# and whose value may change from line to line. For the sake of
simplicity, we assume below that ¢ = 0, otherwise, one needs to replace u(¢) with (u(¢) — ¢) in the ap-
propriate places below.

We start by defining an appropriate inner product on the space V. To this end we observe that there
exists C > 0 such that Clv|, <|v.|;2,, for all v € H'(0,L) satisfying v(0) = 0, thus,

C|U|H2(07L) < |Uxx|]-[ VU S V (41)
We consider now the inner product on ¥ given by
(ua U)V = (ux)n Uxx)H7 (42)

and let ||, be the associated norm. By using Eq. (4.1) we find that |.,(, ;) and |.|,, are equivalent norms on
V and, therefore, (V,(.,.),) is a real Hilbert space.
The first step of the proof is the following simple lemma.

Lemma 4.1. Let Egs. (3.1), (3.2) and (3.5) hold. If f € C(0,T;L>(0,L)) is given, then there exists a unique
solution u € C(0,T; V) which satisfies Egs. (3.10) and (3.11), for all t € [0, T]. Moreover,

u(n)|V < C, (4.3)
where C is independent of f.
Proof. Using Egs. (3.1), (3.7), and (4.2) we find that a is a bilinear continuous and coercive form on 7, that
is

la(u,v)| < Clu|,|v], VYu,veV, (4.4)

a(v,v) = Clo|}, YwveV. (4.5)
For all # € [0, 7], let B(¢) : ¥ — V' be the operator
(B(t)u,v), = a(u,v) + (kf*()u,v),, Yu,v€ V.

Using Eqgs. (3.5), (4.4), and (4.5) it follows that B(¢) is a strongly monotone Lipschitz continuous op-
erator on ¥, and K is a nonempty closed convex set of V. It follows from standard results (see e.g., Brezis,
1968; Duvaut and Lions, 1976; Kinderlehrer and Stampacchia, 1980 or Lions, 1969), that for each ¢ € [0, T
there exists a unique element u(¢) € ¥ which solves Egs. (3.10) and (3.11). Choosing v = 0 in Eq. (3.11) and
using Eq. (4.5) we obtain Eq. (4.3).

Now, let #,, t, € [0, 7] and for the sake of simplicity we denote u(#;) = u;, f(t;) = B, f(t;) = fi- Using
Egs. (3.10), (3.11) and algebraic manipulations we find

a(u1 — Uy, U] — uz) =+ (kﬁ%lh — kﬁ;uz,ul — uz)H < (f1 —fz, Uy — le)H. (46)
Now, from Egs. (4.3), (4.5), and (4.6) we find
Cluy —wa|y <|fi = Lol + 1B1 = Bali= o |B1 + Bali=(0.0)- (4.7)

Since € C(0,T;L>(0,L)) we obtain from Eqs. (3.2) and (4.7) that u € C(0,T; V), which concludes the
proof. O
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Let up denote the solution in Lemma 4.1, and consider the initial value problem

0 +ykuz(0), =0 in Qr, 4.8
B +

0(0) = p, a.e.on (0,L). (4.9)

Clearly, under the assumptions of Theorem 3.1, there exists a unique function 6= 0(f) €
C'(0,T;L>(0,L)) which solves Egs. (4.8) and (4.9). Let Z denote the closed subset of C(0,T;L>*(0,L))
which is defined as

Z=A{peC0,T;L>(0,L))|p(x,t) € [0,1], a.e. x € (0,L), for all ¢ € [0, T]}, (4.10)
and assume that Egs. (3.1)—(3.6) hold. Then,

Lemma 4.2. If f € Z then () € Z

Proof. The result follows from Eq. (4.8) and the assumption that f,(x) € (0, 1] for a.e. x € (0,L). Indeed,
Eq. (4.8) implies that for a.e. x € (0,L), the function #—60(f)(x,?) is decreasing and its derivative vanishes
when ruz0(f)(x, ) <0, implying that 0(f)(x,7) >0 a.e. on Q7. O

We now have all the ingredients to prove Theorem 3.1. Suppose f;, i = 1, 2, are two functions in Z and
let ¢ € [0, T]. We need to compare the functions u; = upg, and u, = uy,.

Since f3,, p, € Z, by using arguments similar to those used in the proof of Eq. (4.7), we find

1 () = ua (1), < CIB1 (1) = Ba(D) o1y -
This implies, by the continuity of the embedding of V into L*(0, L), that

|ur (8) — ua(8) | 1 0.0y < CIBL () = Bo(O) (0.0 - (4.11)
Now, Egs. (4.3), (4.8), (4.9) and the continuity of the embedding of ¥ into L*(0, L), yield

00 (6) — 0(B) (D] 1) < / ki ()0(B,)(s) — K2 (S)0(B)(5) e 0.1 I
<c / ur(s) — 12(8) o ds - € / 10081)(5) — 0(8)(5) 0.1, s

Using a Gronwall-type inequality we obtain

10(B1)(2) = 0(B2) ()| (00) < C/O |1 (5) — a(5)] g 1) ds- (4.12)

Thus, Egs. (4.11) and (4.12) yield

100B1)(2) = 0(B2) (1) 1~(0.0) < C/O B1(s) = Ba(s)| e 0.0) ds- (4.13)

Iterating this inequality » times, we deduce
. " C}'IT}'I
10"(B,) — 0 (ﬁ2)|C(0,T;L°°(0,L)) < 1l 1By — ﬁ2|C(o,T;L>°(0,L))-

Therefore, 0" is a contraction mapping on Z, for all n sufficiently large, and hence 0 has a unique fixed point
in Z which is the unique solution of Theorem 3.1.
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5. Models with deformable support

In this section we describe and analyze several versions of the model in which the support is deformable.
We use the so-called ‘normal compliance’ condition to describe the reaction of the foundation when u < ¢.
We consider the dynamic problem with and without viscosity along with the quasistatic problem. We es-
tablish existence and uniqueness results for these problems. We also consider the manner in which the
solutions of the quasistatic problems with normal compliance converge to those of the quasistatic problem
in which the support is rigid. For the sake of simplicity, and without loss of generality, we assume that
¢ = 0. All the results below apply to the case when ¢ satisfies Eq. (3.4).

We use the following well-known theorem found in Lions (1969).

Theorem 5.1. Let p = 1, q > 1 and let W C U C Y be Banach spaces with compact inclusion map i : W — U
and continuous inclusion map i : U — Y. Then, the set

Sp={uel?0,T; W) € L0, T;Y), ||uHL,,(O,T;W> + o’

19(0,7:7) < R}

is precompact in L (0, T; U).
Also, we will use the following theorem found in Seidman (1989) and Simon (1987).

Theorem 5.2. Let g > 1 and let W, U and Y be as in Theorem 5.1. Then, the set
Ser = {ullla(®) |l + W[l oo.r.v) SR 2 € [0, T]}

is precompact in C(0,T;U).

We consider the same setting as in Section 2, but the foundation now is deformable and its reaction force
fr depends on the beams displacement. We use a ‘normal compliance’ condition to describe it (see, e.g.,
Kikuchi and Oden, 1988; Klarbring et al., 1988), thus,

fr = pl). (5.1)
Here, p = p(-) = 0 is a given decreasing, globally Lipschitz continuous function which vanishes for non-
negative values of its argument, since when u > 0 there is loss of contact. We consider the case where p(-) is
Lipschitz for the sake of simplicity, and more general functions are possible (cf. Kuttler and Shillor, 1999).

The total force acting on the beam consists of the external force f, the adhesive force ¢ and the foun-
dation reaction fg. Thus, the dynamic equation of the beam in the elastic case is

V+Lyw)=f+E+pu) inQr, (5.2)

where v is the velocity, v = «'. To include the effects of viscosity, let B be a function satisfying B € L>(0, L),
and there exists By > 0 such that B > B, a.e. on (0,L). Now, let Lg(v) be defined similarly to L,(u), rep-
resenting internal viscosity of the Kelvin—Voigt type, and adding this term in Eq. (5.2) gives

v+ Lg(v) + Ly(u) = f + ¢+ p(u)  in Q. (5.3)
The associated quasistatic elastic equation is
Ly(u)=f+¢+p(u) in Q. (5-4)

We assume that the adhesion is described by Eq. (2.5), but the unilateral condition (2.6) does not hold
anymore, since we allow for u < 0. Next, the evolution equation for the adhesion field (2.7) is modified as
follows:

B+ yi((u),)’(B), =0 in Q. (5.5)
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We use (u), to ensure that only tension contributes to debonding, since compression does not affect it.
Clearly, a more general condition can be employed, such as allowing for rebonding (cf. Chau et al., 2001),
but we will not pursue it here. We also assume that the boundary conditions are given by Egs. (2.9) and
(2.10).

Next, we define the operators, 4, B, P, and S(f,-) as follows:

(Au,w) = /0 A dr, (5.6)
B = [ B, (57)
ORI pluyw, (5:8)
(st = [ i (59)

Let v =L*(0,T;V), v' = L*(0,T; V'), and denote X = {v € " : v/ € ¥"'}. Proceeding as in Section 3,
we obtain from Eq. (5.5) and the boundary conditions the following abstract formulation of our problem:
Find v € ¥ and f € C(0,T;L>*(0,L)), such that

(nv) + nBv + Au + S(B,u) + P(u) = f in 77, (5.10)

B+ () +)'(B). =0, f € C(0,T;L%(0,L)), (5.11)

B(0) = By, nv(0) = nuo, (5.12)
and

u(t) = u0+/0tv(s) ds. (5.13)

Here, n = 0, 1; when 5 = 1 the problem is dynamic with viscosity, and when n = 0 we have the quasistatic
inviscid problem. We assume that

Box) € (0,1], wvo€H, ugeV.

Theorem 5.3. Under the above assumptions there exists a unique solution of problem (5.10)—(5.13), for n =
0, 1.

Proof. In the case n = 0 existence and uniqueness follow from similar considerations as in Section 4.
Therefore, we consider the case when n = 1. The proof of existence and uniqueness may be carried out
along the lines presented in Section 4, too. Suppose that f € C(0,T;L>°(0,L)) with f(¢) € [0,1] for a.e.
x € (0,L), is given. We consider Eq. (5.10) with given f8, and note the following. The operators, 4,
B: v — v are monotone and linear. Indeed, for D = 4, B, (Du; — Duy,u; — uy) > Cluy — u2|%/ Also,
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t B t
/ <Au1 — Auz, v — U2> ds = / (A(ulxx — um), (lex — UZXX))H ds
0 0

1 [ d
= 5 /0 & (A(ulxx - uZxx)7 (ul)oc - u2xx))ds

= %(A(MIXX(I) - “2xx(t))> (ulx-’f(t) - “ZxX(t)))H > 0.

The operators S(f,-) and P are completely continuous as mappings from X to X’ by Theorem 5.1.
Therefore, the operator, v — Bv + Au + S(f,u) + P(u) is pseudomonotone as a map from X to X', and is
bounded as a map from ¥~ to ¥”. Moreover,

(Bo+ Au+ S(B,u) + P(u), v}, = Bolloll — Cwo)lol],,

which implies that the operator is coercive. Therefore, we can apply the existence theorem of Kuttler and
Shillor (1999) and conclude that there exists a solution of the abstract problem (5.10) and (5.13). Next,
suppose v;, for i = 1, 2, are two solutions of Eq. (5.10) with given f. Then, it follows from Eq. (5.10) that

1 t
Sloi(e) = ()l +BO/ lor = va][3 ds + Ao |1 (1) — wa (0) [}
0

t t 2
+ / (kB (s) (w1 (5) = wa(s)), va(s) — v2(s))  ds < C(/ |o1(s) — vz(S)IHdS> :
0 0
Now, using the boundedness of f8, Jensen’s inequality, and the compactness of the embedding of ¥ into
H, we obtain

t t
Ivl(t)—vz(t)liﬂr/ ||vl—szIZVdS+IIul(t)—uz(t)IIKC/ Jo1(s) = va(s)]7 ds,
0 0

which implies that v; = v, by Gronwall’s inequality. Here, C is independent of f, for f as above having
values in [0, 1].
Multiplying Eq. (5.10) by v and integrating from 0 to ¢, we find, after routine manipulations, that

1 t L t i
3 (05 = loly) + 80 [ lF s+ o (o)~ aoll) + [ @utrnas [ irfeas,
0 0 0

where &' (r) = —p(r) and &(r) = 0. It follows from Gronwall’s inequality that there exists a constant C,
independent of f and By, such that

t
WO + Bo / lo]2 ds + Aoflu(n)] < C. (5.14)

As in Section 4, we define a mapping O : Z — Z for Z (Z given in Eq. (4.10)) as follows: For f € Z, let vy
and u; be the solution of Eq. (5.10) with the initial data in Eq. (5.12). Then ©(f) € Z is the solution of Eq.
(5.11) with the initial data in Eq. (5.13) and u is replaced with uz. We need to consider how does @ depend
on . Let f;,, i =1, 2 be two elements of Z, and denote by v; and u; the variables, vg, and ug, respectively.
There is only one term in Eq. (5.10) containing f and from this term, along with the assumption that
p(x,t) € [0, 1], we obtain
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[(S(B1,ur) — S(Bayu2), 01 — 02)| < /0 KB} () — wr)(v) — v2) dx

’/ [32 uy(vy — vz)dx‘ S kluy — |y |v1 — 02y

L
+ ZK/ 1By = Balluallor — v dx < ey — wa o1 — 0oy + ZKC/ 1B = Ballor — vo| dx, (5.15)
0 0
thanks to the inequality (5.14) and the continuity of the embedding of ¥ into L*(0,L). Here and below, C

denotes a generic constant which is independent of f or By. Then, we find from Egs. (5.10), (5.15) and the
Lipschitz continuity of p, that

1 t t
31010 = w20, + Bo [ or = el s+ Aol = w0y <€ [l = welylor = vl ds
0 0

t
C/O |B1 = Balylvr — va] y ds. (5.16)
Thus,

t t t
01(1) — 02(0)2 + 2By / o — vall? ds + dollir (1) — w(0)[2 < C / o1 — ol ds + C / 1By — ol s,
0 0 0
(5.17)
which implies by Gronwall’s inequality, that

o) = 0 + (0 = 0l <€ [ 16, = oy o (5.18)
where C is now allowed to depend on 7. From Eq. (5.11) we obtain

Bot) = o) = [ (0 (B), 0
and using the inequality (5.14) again along with Eq. (5.18), yields

[ (ul)i(@ﬂ1)+ - (”2)1(@/32% ds

<c/ 108,(5)(x) — OBy (s)(x |ds+C/ (/ B, — ﬁszr> ds.

It follows from Gronwall’s inequality and Jensen’s inequality that

|©B,(x,1) — OB, (x,1)| gc

08,0~ O, < [ 1B, (5) - Buls) P ds.

Iterating this inequality, we find that for n large enough @" is a contraction mapping on C(0,T;H), and
therefore, ® has a unique fixed point . From the differential equation satisfied by f5, we see that f,
B € C(0,T;L>(0,L)). Thus B is the unique solution of our problem. The proof of the theorem is now
complete. [

We now consider the dynamic inviscid (By = 0) problem: Find v € " and f € C(0, T; L*(0, L)) such that
U+ Au+S(Bu) +Pu)=f in 77, (5.19)
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B +ye((w),)*(B), =0, B €C(0,T;L7(0,L)), (5.20)
B(0) = By,  v(0) = w, (5.21)
u(t) = ug + /Ot v(s)ds. (5.22)

We have the following result.

Theorem 5.4. Assume that fy(x) € (0,1], uy € V and vy € H. Then, there exists a unique solution of problem
(5.19)~(5.22).

Proof. Letting By = 0, we denote by v;, us, fi5, the solution of the dynamic viscous problem, (5.10)—(5.13)
where n = 1. Thus Eq. (5.10) is of the form

U+ Bsv+ Au+ S(B,u) + P(u) = f in ¥, (5.23)
for
L
(Bsv, wy = / OV Wy dx. (5.24)
0
Then estimate (5.14) takes the form
ot
Iv(t)|§+5/ o]l ds + oflu()]1} < C, (5.25)
0
where C does not depend on 9. It follows that (Bsvs, vs),- < C. Therefore, for w € 77,

(Bsvs, W), < (Bsvs, 05)3 (Bsw, w)y> < 82w,
Thus,
Bsvs — 0 strongly in ¥, (5.26)

as 0 — 0. From Eq. (5.25) and the boundedness of all the operators, we conclude that there is a subse-
quence, denoted by 6 — 0, such that in addition to Eq. (5.26),

vy — v weak” in 77, (5.27)
vs — v weak” in L*(0,T; H), (5.28)
us — u weak” in L>(0,T; V), (5.29)

where u(t) = up + fé v(s)ds. By Theorem 5.2, we may also assume that for a subsequence
us — u strongly in C(0,T; W), (5.30)

where V' embeds compactly into W, and ¥ embeds continuously into C([0, L]). This strong convergence of
us is sufficient to conclude that

Bs — B strongly in C(0,T;L>(0,L)), (5.31)
where f is the solution to Egs. (5.20) and (5.21). Thus, we also have

S(Bs,us) — S(B,u) strongly in L*(0,T; H), (5.32)



W. Han et al. | International Journal of Solids and Structures 39 (2002) 1145-1164 1157
P(us) — P(u) strongly in L*(0, T; H). (5.33)

Therefore, taking the limit as 6 — 0 in Egs. (5.10)—(5.13), with B replaced by Bs and 5 =1, yields a
solution for problem (5.19)—(5.22). It only remains to verify uniqueness of the solution.

Suppose v; and f5;, i = 1, 2, are two solutions of Eqs. (5.19)—(5.22). It follows from Eq. (5.16), along with
the Lipschitz continuity of p, there exists a constant C, independent of v;, such that

1 t t
§|Ul(t)—Uz(t)|i1+140\|u1(f)—“2(f)||?/<c/ lur — ua| |01 —02|HdS+C/ 1By = Balylvr — va] yds < C
0 0

t t t
x/ \ul—u2|i,ds+c/ |vl—uz|i,ds+c/ B, — B3, ds. (5.34)
0 0 0

Now, from Egs. (5.20) and (5.14), which is an estimate of [[u(#)||;~(, due to the continuity of the
embedding of V into L>(0,L), we obtain

1 t t t
S0 = BB <C [ = wslylBy — ilyds <€ [l —wlds s [ 1 - phids (539
0 0 0

Adding Eqgs. (5.34) and (5.35) and using Gronwall’s inequality yields v; = v, u; = up, and f;, = f,. O

We consider next the manner in which solutions of the quasistatic problems with normal compliance
approach the solution of the quasistatic problem of Section 3, in which no penetration is allowed. Writing
the problem of Section 3 in terms of operators, as in this section, we obtain the following problem,

u(t) € K, (5.36)
(Au,u—w) + (S(B,u),u —w) <(f(1),u —w)y, wek (5.37)
B +yxu*B, =0, B, €C(0,T;L>(0,L)), (5.38)
B(0)(x) = By(x) € (0,1] a.e. on (0,L). (5.39)

We denote by u,, f8, the solution of the quasistatic normal compliance problem in which the normal
compliance is penalized by multiplying it with 1/¢, as ¢ — 0. Thus,

Au+ S(f,u) —|—%P(u) =f, (5.40)
B+ yie((w),)'(B), =0, B, €C0,T;27(0,1)), (541)
p(0)(x) = fy(x) € (0,1] a.e. on (0,L). (5.42)

We let W be any space for which the embedding of V into W is compact. We have the following con-
vergence result, which guarantees that as the support becomes more rigid the solution gets closer to that of
the problem with a rigid obstacle. The main idea of the proof is in establishing the equicontinuity of the
sequence of the solutions {u,} for the problems with normal compliance, and using the uniqueness of the
limit.

Theorem 5.5. The solutions u, of problems (5.40)~(5.42) converge strongly in C(0,T; W) and weak* in
L>(0,T; V) to the solution of problem (5.36)—(5.39).

Proof. Using the fact that 0 € K, we multiply Eq. (5.40) by u, and let w = 0 in Eq. (5.37) and obtain the
estimates
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[llys el <€, (5.43)

for a constant C that is independent of .

To establish the equicontinuity of {u,} we need to consider the continuity of the map ¢ — u,(¢). We let
u = u, be the solution of Eq. (5.40), and for the sake of simplicity we do not indicate explicitly the de-
pendence on x € [0,L]. We have, for s, ¢ € [0, T] and ¢ < s, that

1
Au(s) — Au(t) + S(B(s), u(s)) = S(B(1), u(t)) + = (Pluls)) — P(u(t))) = f(s) = f(2).
Multiplying this expression by u(s) — u(¢), integrating and using the estimate (5.43) along with the
definition of the map S(f,u), we find

lu(s) = u(@)I[5 = KCIB(s) = B(1) g u(s) = )y <IF () = £ (1) g luaCs) — (@)l

where here and below, C is a generic constant which is independent of ¢ or x € [0, L]. Therefore,
luts) = u()l} < C(1£(s) = £}, + 18G) = BOL,)- (5.44)

Now, we consider the differential equation satisfied by . From Eq. (5.41) we have
B~ B0 = [ (-palp)ar
t

and so
|B(s) — ()| < Cls — 1.
Therefore, Eq. (5.44) implies

Juts) = u(e) [} < (1 () = SO +1s = 1),

which shows that the set {u.} is an equicontinuous subset of C(0,7T;V) since by assumption (3.2)
f €C(0,T;H). In addition, Eq. (5.43) implies that the set {u.} is uniformly bounded. It follows from the
Ascoli-Arzela theorem that {u,} is precompact in C(0, T; W). By standard arguments there exists a sub-
sequence ¢ — 0, such that u,, — u weak* in L>°(0, T'; V') and strongly in C(0, T; W), where u is the solution
of problem (5.36)—(5.39). Since the solution of problem (5.36)—(5.39) is unique, it follows that it is not
necessary to take a subsequence, and the whole sequence of solutions of the penalized problems (5.40)—
(5.42) converges weak* in L>*(0,T; V) and strongly in C(0,T; W), whenever W is a space as described
above. [

6. Semi-discrete approximation of the quasistatic problem

We now turn to numerical approximations of the quasistatic elastic problem with normal compliance
studied in the previous section. We establish the convergence of the scheme and obtain an error estimate.
We analyze first a spatially semi-discrete scheme, while a fully discrete scheme is the subject of the next
section. The dynamic problem will be investigated in the future.

We note that the numerical analysis of the quasistatic problem with the Signorini non-penetration
condition (2.6), studied in Sections 2 and 3, is hampered by the following difficulty. The solution of the
problem lies in H2(0,L) and we require, in addition, that 0 <u, but a general function satisfying this in-
equality does not lie in H*(0,L), since it may be only Lipschitz continuous. This means that a general
approximation of the problem will either violate the Signorini condition or will not be in 7, so in either case
the necessary estimates cannot be obtained.
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The problem is to find (u, f§) such that

a(u(t),v) + (kB (Hu(t), v)y = (f(t) + p(u(t)),v), forallveV, (6.1)

B+ VK(“+)2(/3)+ =0 in Qr, (6.2)
p(0)=p, a.e. on (0,L). (6.3)

We introduce a partition of the spatial domain [0,L]: 0 = xy < x; < --- < x3 = L. Denote I, = [x;_y,x;]
and h; =x; —x;_y fori=1,...,M, and h = max, <; <y h; the meshsize. We define the finite element spaces
Vh={" e Vo, is cubic, 1<i<M}, (6.4)

0" ={q" € L*(0,L)|¢"|I; is constant, 1 <i<M}. (6.5)

Thus, V" consists of piecewise cubics, and Q" of piecewise constant functions. We observe that an equiv-
alent definition of the space V" is

vt ={v" e C'([0,L)[v"(0) = v}(0) = 0,"|, is cubic, 1<i<M}.
We define a piecewise averaging operator 2" : L'(0,L) — Q" by
1
P, :m/udx, 1<i<M, uel'(0L). (6.6)
il Ji
Obviously, the operator 2" has the property

12" ully < llully  YueW, (6.7)

where W is any one of L*(0, L), L*(I;), H or L*(I;). Then, a spatially semi-discrete scheme of the quasistatic
problem with normal compliance is:

Problem P%.. Find «" : [0, T] — V" and f" : [0, T] — Q" such that for all ¢ € [0, 7],

a(u (), 0") + (kB (1), ")y = (F() + p(d(1)),0"),, W € V™, (6.8)
(B + 92" k(")) ("), =0 in @, (6.9)
ﬁh(o) = ﬁfl) on (OvL)a (610)

where ﬁf’) € Q" is an approximation of f,.
Using the proof technique of Section 5, it is not difficult to show that the semi-discrete problem has
a unique solution (", ") € C(0,T; V") x C'(0, T; Q") and for some constant C > 0, we have

[« e, SC VR > 0. (6.11)

Our purpose here is to analyze the convergence, and derive error estimates for the solution of P}TI\IC' Since
the function p is decreasing and globally Lipschitz, we have

(p(w1) — p(w2)) (w1 — w2) <0, (6.12)

[p(w1) = p(w2)| S Lp[wi — wal, (6.13)

for some constant L, > 0 and for all w;, w, € R.
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Let us derive now error relations. From Egs. (6.1) and (6.8) we obtain, for 7 € [0, 7]. The first error
relation:

a(u(r) — " (1),0") = (p(u(r)) = p(u (1)), ")y — (<(B(0)'ule) = B" (1) (0)),0),, Vo' € V. (6.14)
Integrating Eq. (6.2) from 0 to ¢ and using the initial value (6.3), yields

B0 = fo =7 [ 8.9 (6.15)
Similarly, Egs. (6.9) and (6.10) imply
=B —v/ Pl (s)"]( (6.16)
Subtracting Eq. (6.16) from Eq. (6.15), we get the second error relation:
B0~ 0 = o= B [ (s (975.6) — 2T (1)) . (6.17)

For v" € C(0,T; V"), we write

a(u(t) — ' (1), u(t) = (1)) = a(u(t) — u"(2),u(t) = o" (1)) + a(u(t) —u" (1), v" (1) — u"(1)).
Using Eq. (6.14), we have

= (B"(0))* (1)), 0" (1) = " (1)) - (6.18)
Now, by the properties (6.12) and (6.13),

(p(u(t)) = p(u" (1)), 0" (1) — (1) < (p(u(t) — p( (1)), 0" (6) — (1))
< Cllu()) = " Ol " (1) — " 0]l
< Cllu() = o" Ol (lu(e) = " @O)lly + lle(e) =" (D)1l 1)
< Cllult) = @Ol + dululr) — " (1)1,

with a small number d; > 0 to be chosen later. Also,

—(1(B) u(t) = (B"(0))" (2)), 0" (1) — u (1)) < = ((B(0)*u(t) — (B"(1))*0" (1)), " (1) — (1)

= —(k(B()* = (B"(0)")u®) + (B (1)) (u(r) = V" (6)), 0" () — " (£)) < Cllu(r) — " (1)|[7; + CII ()
= B @)l + Sallu(r) = (1)1,

with a small number J, > 0 to be chosen below. From Eq. (6.18) and the V-ellipticity of a(-,-) we have

[u(t) = (O} < Cl[u@) = O} + 1BE) = B O3) + C(S1 + 82)l[u(r) — " (1)[I5-
Choosing ¢; and 0, sufficiently small so that C(d; + d,) < 1, we obtain

u(t) — " (D)1, < C(|[ult) = "Dl + [1B(2) = B ()] ,)- (6.19)

We now derive an estimate for f(¢) — f"(¢) based on Eq. (6.17). Write
kuy (5)' B (s) — 2l ()11 (s) = 2" [l ()7 (B (s) = B (9)) + B ()2 (s (5)” = ((5))”)]
+ B (5) (ruy (s)* — P ruy (5)7]).
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Then Egs. (6.7) and (6.11) imply that |ﬂh[;cuﬁ(s)2]| < C for A > 0, and for all s € [0, T]. Hence,
[ius (5)° B (s) = 2" fiul ()" B ()| < CIB(s) = BL(o)| + CIP" [ ()" = u(s)")]
T Clicu, (5)? = 2 [icu. (5)7]- (6.20)
Then, from Eq. (6.17), we get
|W@ﬁ7ﬂh<“%ﬁHH+CAhW®ﬁ%%b+h@fﬂ@ﬁy
+ [[ru (s)? = 2w ()] ,) ds.
and then
W@—WWMﬁw%—%M+CAmN@—W®M+M$%%WMM+WM®2
— P, (5)7]]) ds- (6.21)
Combining Egs. (6.19) and (6.21), we find
et = (@)1 + 118CE) = B" (Ol < CUUIBo — Bolly + lue(e) = " Ol + It = 2 () 3o, rary)
+.¢ [ 0186) = F Oy + ) 6, ) s (62)
Applying the Gronwall inequality, we obtain

h i
llu— ”h”Loc(o,T;V) B = Bl 0,70 < CUIBo = Bollyy + [lu — Uh”pc(o,T;V) + [l — yh(’c”i”hl(orﬂ))»

(6.23)
for all v € C(0,T; V™).

Since u € C(0,T; V), we have u> € C(0,T; H'(0,L)). Under the additional assumption x € H'(0,L), we
have (cf. Ciarlet, 1978; Quarteroni and Valli, 1994)

||K“2+ - W(Kui)llmo,m) < Ch,
where C is proportional to ||} || ¢ 7101 -
Since v" € C(0, T; V") is arbitrary in Eq. (6.23), by following the arguments in Han and Reddy (1999,
Chapter 11) we obtain the next theorem.
Theorem 6.1. Assume the initial value B, is chosen so that
180 = Bollyy — 0 as h— 0. (6.24)
Then the semi-discrete approximation method converges,
llu — uhHLO‘(OAT;V) + 18— ﬁh”Lx(O,T:H) —0 ash—0.
If, in addition, we assume x € H'(0,L) and u € L>(0,T; H*(0,L)) and
1By = Bollys < Ch, (6.25)

then we have the error estimate

=l 7y + 18 = B0 0y < Ch-

We note that if we take f = 2", then the condition (6.24) is guaranteed for fi, € H while the condition
(6.25) is guaranteed for 8, € H'(0,L).
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7. Fully discrete approximations

To develop a fully discrete scheme, in addition to the partition of the spatial domain [0, L] introduced in
the previous section, we need a partition of the time interval [0,T]: 0 = < #; < --- < ty = T. We denote
the step-size k, = t, — t,_ forn = 1,..., N. We allow non-uniform partition of the time interval, and denote
by k = max, k, the maximal step-size. For a continuous function w(#), we use the notation w, = w(¢,).

A fully discrete scheme for the quasistatic problem with normal compliance is:

Problem P%.. Find {u*, ¥}, V" x Q" such that for n =1,...,N,

a(l,o") + (B )l o) = (f, + pul), 0") - o e V7, (7.1)
Bt = By + vk i )T)(BL ), = 0, (7.2)

and
u07ﬂ0 - 0 on (OaL)7 (73)

where /30 € ¢ is an approximation of f, and u} € V.

Here, u! € V" is an artificial initial value required by the fully discrete scheme. This value is needed in the
explicit discretization (7.2) with » = 1. Such an artificial initial value can be avoided if we replace Eq. (7.2)
by the implicit discretization

B+ 9k, P [ (2] (B )). = B

However, then this scheme is much more difficult to analyze or use. Although we use the symbol u}, it does
not represent an approximation of u(0). Moreover, as the error analysis below suggests, we have the
freedom to use any value in a bounded set for u (e.g., uf, = 0) without decreasing the convergence order of
the method.

The fully discrete solution exits and is unique, and for some constant ¢, C; > 0,

—ek <BFLL U, <Cyy, n=0,1,...,N, Vhk>0.
From Egs. (6.1) and (7.1) we have the first error relation,

alu, — ") = (plu,) — p(*), 0") — (<(Bu, — (Bul), ) Wt € . (7.4)
From Egs. (7.2) and (7.3), we have

= —vZk P ) (B (7.5)
Combining Eq. (6.15) at # = ¢, and Eq. (7.5) we obtain the second error relation,
n i
Bu—= B =Bo—Bo—7) / [ () B (s) = 2" [ )TI(BYE, ) ] ds. (7.6)
j=1 i

Similarly to the arguments leading to Eq. (6.19), we conclude from Eq. (7.4) that

et =41l < C(luw = vlly + 11, = B l) (7.7)

for any v € V. Here and below, C is a positive constant independent of k or 4. Writing
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()’ (s) = 2 el )TN ) = o) 1B () = (Bya) ] Kl (5) + (1), 1B () [ (s)
= ()] ()5 (B 1) — 2 [k )30,

and using Eq. (6.20), we obtain the following inequality from Eq. (7.6):

1B, = Bl < 11Bo = Bolly + €Y // (B () = (Byoi) My + Ml () = (1) ] 1) ds
j=1 Yl

+ O k(1B = B+ Ny = 1y + N 1)s = 2 [y 1)2 L) (7.8)
j=1
Combining Eqgs. (7.7) and (7.8) leads to

1 4
[l = N1y + 118, = Bl < CllBo = Bollr + Cllu = v3lly +C Y / 1(II[ﬁ(S) = (Bi) Ml =+ i (s)
j=1 Y=

— () M) s+ © Yl )2 = 2y )2l + € Sk (1B = Bl + g = ).
j=1

J=1

Since v" is arbitrary in V", applying a discrete Gronwall inequality (cf. Han and Sofonea (2000), Lemma
4.1) we have

max ([lu, = u, ||, + 118, = B lli] < CllBo — Bolly + Chl[u(0) _u0||H+CZ/ (I18.(s)

1<n<N

N
= (B ) el + M) = () ) ds + €D byl ae(ay1) = 2 (1) ]l
=
+C max inf |ju, — Ny (7.9)

1<n<N yheyh

Inequality (7.9) is the basis for convergence analysis and error estimation. Since u,, . € C(0,T;H),
then u, (s) and S, (s) are uniformly continuous on [0, 7] in the norm || - ||,,. Hence,

Z/ (1B:+(5) = (B g + s () = (1), ) ds — 0 as & — 0.

Under the assumption ()’ (B,) € W">(0, T; H), we have

S [ 0B = (B0l () = (), ) ds <

Summarizing our findings, we have the following result concerning convergence and convergence order of
the fully discrete scheme.

Theorem 7.1. Assume ||ul||,, is uniformly bounded with respect to h and the initial value [ is chosen so that
1B = Bollyy — 0 ash— 0. (7.10)

Then, the fully discrete method converges, thus

max [””n_”hk”l/+||ﬁ ﬁﬁk\IH] —0 ashk—0.

1<n<N
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If. in addition, we assume x € H'(0,L), u € L*(0,T; H>(0,L)), (u.), (B.) € W'(0,T;H), ||ut]|, is
uniformly bounded with respect to h and

1180 = Boll < Ch, (7.11)

then, we have the error estimate

max ([[lu, —u* ||, + 118, = B’ lly] <Clh+ k).

1<n<N

Again we note that if we take ) = 2", then conditions (7.10) and (7.11) are easily satisfied.
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